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A B S T R A C T

Disintegration is a physical phenomenon of atomic nuclei —radioactive isotopes decay— has
been modeled with different approaches (deterministic and random), from didactic toy models
using as reference the roll (experiment) of standard six-sided dice (Arthur and Ian, 2012), to
the generalization of probabilistic methods. Using for example the moment generating function
(MGF) method, to obtain the behavior of its probability distribution for 𝑛 multi-sided dice, —i.e.,
dice of 𝑠 ≥ 6 sided (Singh et al., 2011, Sánchez-Sánchez et al., 2022)—. Radioactive decay is
essentially statistical (random) in nature, so we cannot predict when any of the atoms will decay.
The MGF method and stochastic models were applied to the so-called radioactive dice (toy
model), to obtain a theoretical Poisson-like distribution (stochastic model). In this work, we carry
out an exhaustive study and a comparison —on the apparent discrepancy— of the Binomial and
Poisson statistics associated with the decay of radioactive nuclei. To gain a deeper understanding
of this phenomenon —radioactive decay— we use the theory of stochastic processes, i.e.,
modeling these distributions in a stochastic context using the efficient mathematical tools of
this theory. They are discrete random variable processes in continuous time. So, we use an
approach of the so-called master equation (Kolmogorov equations). We study them in general as
Birth-Death processes —both processes separately, highlighting their disagreements— modeling
the Poisson process as a Pure Death process. We solve the master equations of the Poisson process
by introducing the so-called sojourn time. Also, we study the relative fluctuations through the
Fano factor. We analyze the deeper concept of Entropy of the binomial and Poisson processes by
calculating their metrics —In Shannon’s information theory context—. We show that they have
a corresponding statistical link between both images and the radioactive decay distributions. In
this way, we gain a deeper insight into the random nature of nuclear decay with its stochastic
distributions. In summary, this paper addresses the extension of deterministic systems that are,
in reality, of a random nature within a theoretical framework of so-called stochastic processes
and information theory (entropy). We link entropy stochastic (binomial and Poisson) and its
intrinsic fluctuations with the physical mechanisms of the collective dynamics of radioactive
decay.
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1. Introduction

It is harder to crack prejudice than an atom. A. Einstein.
Non-deterministic events —random or stochastic— occur frequently in natural phenomena and physical systems, necessitating the

development of statistical-probabilistic models to study their evolution. These models help us understand and forecast the behavior
of these events over time, known as stochastic processes. Some examples include weather patterns, earthquakes, stock market
predictions, radioactive decay in atoms, nuclear decay, and even outcomes in casino gambling [1]. Hence, the research of stochastic
processes is currently a crucial mathematical and conceptual tool in physics, information sciences, engineering, and technological
applications. Both classical and quantum physics have delved into stochastic modeling to comprehend systems in which, owing to
their random nature, it is essential to regard variables as inherently random [2,3]. For example, a case of particular interest is the
so-called radioactive dice system [4–7]. Despite being a didactic tool in high school physics and chemistry labs and classrooms, it aids
in comprehending the behavior of nuclei —radioisotopes— in radioactive activity. Murray and Hart [4] demonstrate this application
on a didactic level, enabling analysis of the trend of radioactive dice as the number of dice and sides increases. According to this
study, the output of the radioactive dice will adhere to a deterministic exponential decay law.

On the other hand, Singh, A.K. et al. in Ref. [8], utilize the standard Moment Generating Function (MGF) method to investigate
the probabilities of unbiased dice throwing. They apply this method to gambling games in casinos (such as those in Las Vegas),
employing standard six-sided dice to predict the odds associated with each simultaneous roll of 1 to 5 dice. This method is further
generalized by Sánchez et al. [9] for multi-sided dice, with consideration given to its application to the so-called radioactive dice
introduced by Murray and Hart, while preserving its inherent randomness. However, it must be emphasized that the disintegration of
radioactive nuclei (radioisotopes) is a completely random phenomenon. The studies mentioned above and the ones without chance
involved: They were studied under a deterministic macroscopic model, using the exponential mathematical decay law [4,10,11] at
least as a first approximation for. . . [10,11]. On the other hand, a statistical approximation was carried out by using probability
distributions such as binomial or Poisson [12,13]. Other studies use stochastic processes by master equations to deduce the respective
distributions [7,14,15]. Moreover, there are works related to this innovative methodology, based on the generation of statistical
moments and binomial series, that have already been carried out for advanced topics related to multi-fractal analyses and time
series (see Refs. [16,17]).

However, it must be emphasized that the disintegration of radioactive nuclei (radioisotopes) is a completely random phe-
nomenon. The studies mentioned above, both deterministic and those incorporating chance, have been conducted. Deterministic
macroscopic models have utilized the exponential mathematical decay law [4,10,11], at least as a first approximation for [10,11].
Conversely, statistical approximations have been made using probability distributions such as binomial or Poisson [12,13]. Various
studies have employed stochastic processes through master equations to deduce the respective distributions [7,14,15]. Furthermore,
ovel approaches have been devised, based on the generation of statistical moments and binomial series, for advanced topics about
ulti-fractal analyses and time series (refer to Refs. [16,17]).

The interest in this work lies in conducting a study employing the approach of a stochastic model for radioactive decay. A
tochastic model in nuclear physics is a mathematical model that utilizes probability and statistics to describe the behavior of
uclear systems. These models are employed to investigate the dynamics and evolution of nuclear systems, including radioactive
ecay, fission, and fusion reactions, as well as the behavior of nucleons within the nucleus. They can also be utilized to simulate and
redict the behavior of nuclear systems under various conditions and to analyze experimental data. Several commonly employed
echniques in stochastic modeling in nuclear physics encompass Monte Carlo simulations, Markov Chain-Monte Carlo, and the
etropolis–Hastings algorithm, as exemplified in [3] part III and [18] part V.

Based on the above, the purpose of this work is to provide a more realistic approximation to the radioactive decay system by
tudying its evolution over time using a stochastic approach. In a previous study [9], we generalized the MGF method, as utilized
n [8], to encompass scenarios involving the rolling of 𝑛 dice with 𝑠-sides, thereby allowing for real —and even imaginary— numbers.
his extension facilitated the representation of a discrete random variable (d.r.v.), which signifies the sum of the resulting values
n the top faces. Consequently, we derived the total probability distributions (histograms) that emerge from rolling 𝑛 multi-sided
ice.

Moreover, we employed the MGF method to model population systems of radioactive atoms or nuclei (radioisotopes) undergoing
ecay in a more realistic context, assuming their behavior to be random —or partially random—. We modeled this phenomenon
s a stochastic process using a Markov (process) chain and considered it as a memoryless process, involving binomial, Poisson, and
xponential models. In this paper, we calculated and compared their statistics and how their distributions evolve, simulating with
ome real physical parameters and periods involving the half-life of the respective radioisotopes used in nuclear medical physics
see, for example [12,13,19,20]).

We have further enriched our understanding by calculating additional statistical quantities, such as moments, intrinsic fluctu-
tions, and entropy metrics associated with binomial and Poisson distributions. This analysis, a first in the field, accounts for the
andom nature of these physical systems and provides deeper insights into the complete system. Specifically, we computed the
ntropy using Shannon’s information theory [21], treating the distributions as stochastic processes. This approach, which had not
een reported previously, allows us to track the evolution of system configurations by comparing the respective entropy metrics.

Our study proceeds as follows: In Section 2, we briefly introduced to radioactive decay phenomena and toy models from an
mbivalent viewpoint, that is, deterministic and non-deterministic, Analyzing the models mentioned previously. Section 3, gives a
2

uick overview of so-called stochastic processes. In the first instance, we showed the previously studied models of the Binomial
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Process 3.2; which we needed as a point of comparison for our stochastic study. In Section 4, we carried out a study of the so-
called master equations (Kolmogorov) to model two-state processes 4.2, and Poisson 4.3. Then, we modeled the Poisson process
from the perspective of the Birth-Death processes separately —Pure Death Process (PDP) 4.3 and Pure Birth Process (PBP) 4.4— by
introducing the concept of sojourn time into the radioactive system. It is shown 4.4.1 that partial nuclear decay can occur as the
system evolves in different periods and with different parameters. In Section 5, we showed our main results obtained, namely,
the relative fluctuations of the random system (using the Fano Factor 5.1) and the calculation of the Stochastic Entropy 5.2 for the
binomial and Poisson processes. Following the common thread of the didactic research [4–7], we developed a deeper approach to
radioactive decay, leaving the bases to carry on with this investigation and other physical systems with the same stochastic approach
and their entropy for future work. Finally, in Section 6, we gave our conclusion.

2. Radioactive decay

Radioactive decay is, as we mentioned earlier, essentially a random phenomenon in which a nucleus or atom spontaneously emits
a particle and becomes a new chemical element. We cannot predict exactly when a given nucleus will suffer this event, but we can
study a large collection of nuclei and draw some interesting conclusions related to their statistical and probabilistic properties.
Radioactive decay, also known as radioactivity, is a natural phenomenon that occurs in the nucleus of some elements. Radioactive
elements are called isotopes each isotope has a specific rate of decay, which means that it can be predicted with some accuracy
how many isotopes will decay in a given period. Some isotopes have a very slow rate of decay and can remain stable for thousands
of years, others have a very fast rate of decay and disintegrate in a matter of seconds or minutes. When an isotope decays, it emits
one of three subatomic particles: an electron, a proton, or a neutron. Decay involving the emission of electrons is called beta decay,
while decay involving the emission of protons is called alpha decay.

Decay involving the emission of neutrons is called gamma decay. Each type of decay has a different effect on the atomic
nucleus and can create a different element. Radioactive decay is an important process in nature and has several applications in
everyday life. For example, it is used in medicine to produce images of the human body and to treat some cancer types. It is also
used in industry to detect equipment failures and to produce nuclear energy. However, exposure to high levels of radiation can
be dangerous and cause health damage. Therefore, it is important to take precautions when working with radioactive materials
(see for example: [10,11,13,20,22]). On the other hand, in this paper, as we already mentioned, we do not perform an analysis
of the properties and conditions necessary for the physical detection of radiation or particles involved in radioactive decay, nor
experimental statistics. For a study on this matter, those interested can consult: [10,11,13,19,20,22,23] and the additional sources
cited therein.

Therefore, when we apply stochastic process modeling to the detection of photons or radioactive isotope radiation, the detection
count probabilities will largely depend on the periods, physical parameters, type of detection device of the particles, and so
on. However, the statistics associated with particle counting —for example: random polychromatic natural light or photons of
monochromatic light (such as a Laser)— depend on the type of radiation, namely classical or non-classical (quantum-bosons), in
addition to taking into account whether it is coherent, incoherent or partially coherent light. These characteristics of counting and
experimental measurement of radiation can be transferred to the nuclear context taking into account its particularities such as the
type of particles (fermions) emitted and absorbed (alpha, beta, etc.). Because in general, the light has a random behavior due to the
unpredictable fluctuations of the sources and propagation medium. However, if we consider that random fluctuations of intensity
are relatively low, then Poisson’s statistics are ideal for this type of process (Optical Coherence Theory; see refs:Mandel and Wolf [2]
hapters 11 and 12, and the additional sources cited therein).

.1. Radioactive decay: Toy model

A toy model is a simplified model or representation of a system, concept, or phenomenon that is used to illustrate or explain
omplex ideas in a more manageable and easily understood way. Toy models are often used in scientific research and education
o explore the basic principles of a system or to test hypotheses and predictions. Toy models are usually designed to capture the
ssential features of a system while ignoring or simplifying other details that are not directly relevant to the topic being studied.
his allows researchers to focus on the fundamental mechanisms or processes, rather than becoming entangled in unnecessary
omplexity. Toy models can be used in a wide range of disciplines, including physics, biology, economics, and computer science.
hey are often used to study complex systems that are difficult to analyze using traditional mathematical or computational methods.
ome examples of toy models include: 1. The typical model, of a simple pendulum, is used to illustrate the basic dynamic principles
f small oscillations. 2. Model a simple economic system, which is used to explore the effects of different economic policies or market
onditions. 3. A neural network model, used to study the basic principles of learning and decision-making in artificial intelligence
ystems. 4. A simplified model of radioactive decay, characterized by unbiased dice rolls (although we could include intrinsic bias).
his is a considerable physical and mathematical simplification; however, retaining its random traits, brings us closer to the reality
f this natural process. Toy models can be very useful for getting a basic insight into a system or concept; however, they should
ot be confused with real-world systems, which are often much more complex and can exhibit behavior that the toy model does
ot take into account. Example 4, would be the one that interests us most, as it aligns with the focus of our research on stochastic
odeling. In [4] Murray and Hart introduce a toy model for didactically studying the phenomenon of radioactive decay. Based on

he rolling of unbiased 6-sided dice, along with the exponential (deterministic) law of decay, they carry out a Taylor series expansion
3

f the binomial (geometric progression) and exponential functions. By comparing the two series, they show how to approximate the
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exact values that describe the disintegration process of radioactive atoms (nuclei). Essentially, they propose the model (binomial
geometric progression):

𝑁𝑛 = 1000(1 − 1∕6)𝑛,

here 𝑁𝑛 is the total number of radioactive dice, with 𝑁0 = 1000 is the initial number, which can vary. And 𝑛 represents the number
f mass throws of the radioactive dice. Later, they make the comparison with the decay law:

𝑁𝑡 = 1000 exp (−𝑡∕6).

ere, 𝑁𝑡 is a function (of time), which represents the exponential decay of the radioactive dice.
As we already mentioned, they compare the respective Taylor series of both formulas, reaching a very interesting conclusion

which they no longer develop theoretically): that the way for both series to converge is to make the number of dice faces increase,
hich they represent with the variable 𝑝. This allows for greater precision in the behavior of the real phenomenon. Under this
remise, Sánchez et al. [9], generalize the toy model (although it is still an approximation) using the moment-generating function
ethod (MGF-M). In the paper by Sánchez et al. [9], they generalize of the toy model (6-sided dice) to 𝑠-sided dice. That is, for

n arbitrary number of sides. Considering its random characteristics, as an intrinsic feature in the throwing of dice for games of
hance, as used in the article by Singh, et al. [8] for gambling in Las Vegas casinos. In the paper by Sanchez, they expand and
eneralize Singh’s method to apply not only to traditional 6-sided dice but also to multi-sided dice (s-sided) and the didactic concept
f radioactive dice under the idea proposed by Murray et al. Their application is not limited to integer values, but also extends to
ll real numbers and even imaginary units. They got the model:

As previously mentioned, they compare the respective Taylor series of both formulas, reaching a very interesting conclusion
which they no longer develop theoretically): that the way for both series to converge is to make the number of dice faces increase,
hich they represent with the variable p. This allows for greater precision in the behavior of the real phenomenon. Under this
remise, Sánchez et al. ([9]), use the moment-generating function method (MGF-M), although it is still an approximation. Generalize
he toy model (6-sided dice) to s-sided dice. That is, for an arbitrary number of sides. Considering its random characteristics, as an
ntrinsic feature in the throwing of dice for games of chance, as used in the article by Singh, et al. ([8]) for gambling in Las Vegas
asinos. In the paper by Sanchez, they expand and generalize Singh’s method to apply not only to traditional 6-sided dice but also
o multi-sided dice (s-sided) and the didactic concept of radioactive dice under the idea proposed by Murray et al. Their application
s not limited to integer values but also extends to all real numbers and even imaginary units. They described the model as:

𝑀𝛴 (𝑡∗) =
1
𝑗𝑛

(𝑆𝑗−1
∑

𝑟𝑗∈R
𝑒𝑘𝑡

∗

)𝑛

=

(𝑆𝑗−1
∑

𝑟𝑗∈R

1
𝑗
𝑒𝑟𝑗 𝑡

∗

)𝑛

.

where 𝑀𝛴 (𝑡∗) is the moment-generating function (MGF), 𝑗 is an integer (𝑗 ∈ Z+) that labels the number of sides (discrete random
ariable d.r.v.) of the multi-sided die, and 𝑆𝑗−1 and 𝑟𝑗 ∈ R, (𝑡∗ does not represent time, it is an auxiliary or dummy parameter used
n elementary probability theory). In addition, gives the probabilistic weight of the number of sides (i.e., 𝑝𝑗 = 𝑝(𝑗) = 1∕𝑗). 𝑟𝑗 can

range from negative values, zero and for any real number and imaginary. The formula they obtain, in addition to being very general,
encompasses the probabilistic and statistical features of the random nature of the dice system.

According to this generalization, we can approximate the radioactive toy model based on 6-sided dice to a stochastic process
modeled by probability distributions, fundamentally binomial, and Poisson. Nevertheless, we could choose another model with
stochastic characteristics to study the phenomenon of radioactive decay. For example, using stochastic differential equations,
whereby our random variables and time are both continuous, including so-called Gaussian noise. But the essential idea of our
study is to analyze the behavior and performance of the binomial and Poisson distributions, as stochastic models for radioactive
decay.

2.2. Radioactive decay: deterministic model

Deterministic models are those in which the outcome is completely determined by the initial conditions and rules of the model. On
the other hand, random models include elements of chance or uncertainty, meaning that the outcome is not completely determined
by the initial conditions and rules of the model. For example, imagine a model that simulates the parabolic motion of a particle
using Newtonian laws. A deterministic model of this system could accurately predict the position of the particle at any given time,
as long as the initial conditions (such as the initial position, velocity, and angle of the particle) and the rules of the model (such as
the law of gravity) are known. However, if the model includes random elements, such as an unpredictable gust of wind acting on
the particle, then the final result would not be completely determined by the initial conditions and rules of the model.

In general, deterministic models are easier to understand and predict. Still, they may be less accurate than random models in
situations where there is uncertainty or unknown randomness, such as white noise (see for example [18] chap. 17 and [2] chap. 2).
Random models, on the other hand, can be more accurate in these situations. Still, they may also be more difficult to understand
and predict due to the uncertainty or chance involved. In the context of radioactive decay, we know that it is a completely random
phenomenon. Since the disintegration of nuclei is completely spontaneous, its behavior corresponds to quantum and nuclear laws.

However, it has also been studied in the context of a deterministic macroscopic model using the exponential decay law
(see Eq. (1)), to make approximations and simplifications of these types of systems. [10,11,20]. The exponential decay law is a
mathematical relationship that describes how a quantity decreases exponentially over time. This relationship can be expressed
4
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by Eq. (1), where 𝑁0 is the initial amount of the substance, 𝑁(𝑡) is the final amount of the substance, 𝑡 is the elapsed time, and 𝛾 is
an (inverse) time constant characteristic of the material type. In the context of a deterministic macroscopic model, this law is used
to describe how systems change over time in a predictable and deterministic way. For example, it can be used to describe how a
concentration of a substance dissipates in the environment, or how a radioactive material disintegrates. The study of radioactive
decay continues to be a topic of current interest. For example, Recently, A. Malyzhenkov, V. Lebedev, and Alonso Castro [24]
carried out an interesting research on what they call the Nuclear Decay Recoil (and nuclear recoil spectroscopy), making use of the
exponential decay model, and some innovative experimental techniques related with optical traps to capture and levitate particles
during radioactive kickback.

We must bear in mind that according to all this, we have two approaches, namely, deterministic and random, to describe the
phenomenon of radioactive decay. Each with its respective advantages and disadvantages, without losing sight of the fact that the
phenomenon is one hundred percent random. Therefore, it is reasonable to consider the stochastic model to be a more accurate
approximation of reality. The second one is given through a random variable associated with its probability distribution function,
but the exponential model must be given the appropriate interpretation, as mentioned by S. P. Huestis [7]. Nevertheless, it is not the
only interpretation that supports the random process of radioactive decay, there are also opinions without including the deterministic
one, where studies (see, [12,14,15]) are made directly on the different types of distributions that describe the process, particularly
binomial and Poisson distributions.

Mathematically deterministic description: The process when an isotope 𝐴 transforms to isotope 𝐵, written as 𝐼𝐴 ⟼ 𝐼𝐵 is
represented by an ordinary linear differential equation given by

𝑑𝑁𝐼𝐴 (𝑡)
𝑑𝑡

= −𝛾𝑁𝐼𝐴 (𝑡);

where the solution is (𝑁𝐼𝐴 (0) = 𝑁0)

𝑁𝐼𝐴 ≡ 𝑁(𝑡) = 𝑁0𝑒
−𝛾𝑡 (1)

where 𝑁(𝑡) is interpreted as the number of undecayed nuclei remaining after a time 𝑡, 𝑁0 is the number of nuclei present at time
𝑡 = 0 and 𝛾 is the decay constant specific of each isotope given by 𝛾 = 1∕𝜏, where 𝑡1∕2 = ln 2∕𝛤 = (ln 2)𝜏 are the mean lifetime
and the half-life of the decaying atoms, respectively [10,11]. The Eq. (1) can be interpreted from two different but complementary
points of view. One deterministic, in which 𝑁(𝑡) represents the total number of isotopes that have not yet decayed, and another
interpretation where the expected or average values were considered according the Ref. [7]. The nuclei disintegration process is
one by one and the time in which 𝐼𝐴 transforms into 𝐼𝐵 is random in nature, therefore, the most appropriate way to model it is
through a stochastic model.

We should mention that the validity of the Radioactive Decay Exponential Law has been debated for a long time due to notable
deviations, not only of a theoretical nature but also when very precise measurements have been conducted. Previous studies [25,26]
have addressed this issue. Additionally, experiments by E. B. Norman, et al. have been conducted over extremely precise periods
ranging from 0.01% of a half-life to periods encompassing 45 half-lives. These experiments found no significant deviations that
would challenge the exponential decay law. Quoting E. B. Norman, et al.: Our data were also analyzed to search for non-exponential
effects of this type. No indications of such deviations were found in our data and the limits derived on their amplitudes are shown in Table
II. (see Ref. [26] page 2248).

It’s worth noting that there has been significant controversy regarding which type of probability distribution is most suitable for
a comprehensive statistical description of the radioactive process, particularly in fields such as radio chemistry, nuclear engineering,
medical physics, and radiological sciences in general [12,14,15,23]. This arises from the varying decay time scales inherent
in the decay constant for different types of radioisotopes and times [12,13]. From a probabilistic and statistical perspective,
certain probability distributions, such as the binomial and Poisson distributions, are theoretically understood to be mathematically
equivalent. In the upcoming sections, our focus will be on investigating the stochastic model for radioactive decay, particularly
emphasizing the binomial and Poisson distributions to compare their probabilistic and statistical characteristics. We will explore
their evolution, moments, Fano factor, and, notably, their entropy.

3. Stochastic processes in radioactive decay

Our goal in this and subsequent sections is to demonstrate that the decay of radioactive isotopes, as described by the deterministic
Eq. (1), is approximately related to the stochastic process of radioactive decay. This stochastic process is described through a
probability distribution function (PDF ) that accurately captures its inherently random nature. They are distributed through a
binomial process, akin to rolling radioactive dice with a few nuclei. However, for a more accurate depiction of reality, we adopt
a Poisson Process Model (PPM). This approach is particularly suitable for situations where the number of trials is very large and
the probability per event is small. Nevertheless, it’s crucial to note that both the periods of the process and the parameters are also
highly relevant.

Thus, we compare it with the Binomial Process Model (BPM) as proposed in the Refs. [7,12,14,15]. Theoretically, the Poisson
distribution provides a better approximation for large values of n and small probabilities, such as when the number of isotopes
(nuclei) increases significantly. This increase can be likened to the number of sides, akin to the number of dice—multi-sided—
involved in the theoretical study of the physical event of radioactive decay. Building on the didactic application of radioactive dice,
as demonstrated by Murray and Hart [4], along with other didactic works in physics and chemistry [5–7], we can bridge the gap
5
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to more fundamental research on the radioactive decay event. This allows us to demonstrate the effectiveness of applied stochastic
processes compared to deterministic models. Our initial approach is based on the formulation of multi-sided dice developed in the
reference by Sanchez et al. [9] (see sec. 2.1), where the probability distribution functions (in the discrete case) are theoretically
derived. In this elementary study, the authors progressively increase both the number of (radioactive) dice and the number of sides
per die — mimicking the behavior of radioactive nuclei, as proposed in the study by Murray and Hart [4] 2.1. Consequently, the
respective Poisson (Binomial) style distributions can be generated for each roll of radioactive dice (isotopes).

On the other hand, supported by a stochastic process (Poisson or Binomial), which for a very large n tends to behave like
normal distribution according to the Central Limit Theorem (CLM) [18,27,28]. Therefore, as the number of radioactive dice

increases, along with their sides, the distribution tends to become continuous. Due to random events with this type of behavior, its
probability distribution function (PDF) begins to describe a behavior increasingly similar to that of a continuous variable. Therefore,
the comparison of the binomial and Poisson distributions in elementary probability theory (see, for example, [18,27,28]), as well
as in a more advanced context in the realm of stochastic processes, is more synergistic than op-positional. This is because they are
complementary distribution functions, as demonstrated in elementary literature. We further illustrate this synergy in this paper by
applying them to the aforementioned stochastic model, with particular emphasis on the Poisson model.

A Poisson Process is essentially a stochastic process featuring a discrete random variable evolving (whether discrete or continuous).
It describes a sequence of arrivals along the real axis and is commonly employed to model phenomena such as the arrival times of
events in a system. This process entails randomly distributed appearances over time, space, or some other one-dimensional variable,
with the number of occurrences in any non-overlapping interval being statistically independent. The Poisson process is characterized
by its monotone non-decreasing function, making it a counting process.

This relates to the repetition of an event along a one-dimensional axis, often represented by the time variable. These events
manifest as points randomly distributed along the time axis, as previously mentioned. Further development within a broader
theoretical context for the Poisson process can be found in Ref. [29]. For a more explicit and didactic treatment, see also
Refs. [18,30–32].

It’s worth noting that the Poisson process is a specific case of the so-called Birth and Death process [18], which finds extensive
utility and application in the physics of many-particle systems and species biology. We will observe and demonstrate that the
radioactive decay process can be regarded as a pure death stochastic process. However, it’s essential to mention that the Poisson
process can also be derived as a pure birth process. In the following sections, we will provide the conceptual and mathematical
arguments to obtain the process from both perspectives.

3.1. Stochastic modeling

Stochastic Markov processes in continuous time offer a modeling framework facilitated by the so-called master equations —
a term commonly used in statistical physics [2,3], stemming from the Chapman–Kolmogorov equations (CKE) involving discrete
random variables in both discrete and continuous time (see, for example, [18,31,32]). This section presents the general model for
a continuous-time two-state process, which is adequate for modeling both binomial and Poisson processes.

As mentioned earlier, we demonstrate the validity of a general two-state model from first principles, enabling us to investigate
radioactive decay through a stochastic process. Before delving into our stochastic Poisson model, we introduce examples of binomial
models proposed by Huestis [7] and Foster et al. [14,15]. These binomial and Poisson processes are among the most widely used
in the literature on stochastic systems, though they are not the only ones.

3.2. Binomial process model

As mentioned earlier, we now present two stochastic models corresponding to the binomial distribution. Radioactive decay
fundamentally operates within the realms of probability and statistics. The likelihood of one or more nuclei disintegrating is
governed by probabilistic events. For a single nucleus, the probability (as a function of time) is modeled according to Huestis as [7]:
𝑑𝑃𝑖𝑝(𝑡)
𝑑𝑡 = −𝛾𝑃𝑖𝑝(𝑡), Where 𝑖𝑝 represents the rate of change of the initial process (in this case, without decay). This is a simple first-order

differential equation, with the initial condition 𝑃𝑖𝑝(𝑡 = 0) = 1, reflecting the physical conditions of radioactive decay, where initially
there are no decay events at 𝑡 = 0. The solution to this equation is 𝑃𝑖𝑝(𝑡) = 𝑒−𝛾𝑡. Mathematically, this equation and Eq. (1) are
quivalent. However, they carry different meanings: the first equation represents the probability that a nucleus has not decayed,
hile Eq. (1) represents the deterministic event of the number of nuclei that have not decayed.

That is, with the help of the binomial distribution 𝑃𝑛(𝑥) =
(𝑛
𝑥

)

𝑝𝑥𝑞𝑛−𝑥 we can substitute the solution function 𝑃𝑖𝑝(𝑡) = 𝑒−𝛾𝑡, and we
et

𝑃𝑁0
(𝑡) =

(

𝑁0
𝑥

)

𝑃 𝑥(𝑡)
(

1 − 𝑃 (𝑡)
)𝑁0−𝑥 =

(

𝑁0
𝑥

)

𝑒−𝑥𝛾𝑡
(

1 − 𝑒−𝛾𝑡
)𝑁0−𝑥. (2)

where 𝑃𝑁0
(𝑡) is a binomial process, and r.v. 𝑛 = 𝐱 is the number of undecayed nuclei 𝐼𝐴 at time 𝑡. Whose moments in this case are

given by 𝜇(𝑡) = 𝐄[𝑋(𝑡)] = 𝑁0𝑒−𝛾𝑡 and 𝑉 𝑎𝑟(𝑡) = 𝜎(𝑡) =
√

𝑁0𝑒−𝛾𝑡(1 − 𝑒−𝛾𝑡).
However, Foster et al. [14,15] propose an apparently better stochastic approximation, using a (very simplified) master equation,

eading to a binomial process. Nevertheless, we must clarify that this representation is characteristic of a so-called Yule stochastic
6

rocess, which is a pure birth process, (the general process refers to the Birth and Death Process (BDP) [18,30,32,33], which we will see
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briefly later in the next section). The Yule (birth) process is a model for population growth used in statistical physics and biology.
Thus, they propose the model:

𝑑𝑃 (𝑥, 𝑡)
𝑑𝑡

= 𝛾
[

𝑃 (𝑥 − 1, 𝑡)(𝑁0 − 𝑥 + 1) − 𝑃 (𝑥, 𝑡)(𝑁0 − 𝑥)
]

(3)

With initial conditions 𝑃 (0, 0) = 1 and 𝑃 (𝑥, 0) = 0 (which are quite arbitrary in this work by Foster et al.). According to Foster
t al. [14,15], 𝑃 (𝑡) must satisfy the fundamental differential equation 𝑃 ′(𝑡) + 𝛾𝑃 (𝑡) = 𝛾, with solution 𝑃 (𝑡) = (1 − 𝑒−𝛾𝑡), where 𝛾 is
he radioactive decay parameter (decay rate per unit time). With the following statistical moments: The expectation and variance
or 𝑋(𝑡) are: 𝐄(𝑋) = 𝑁0(1 − 𝑒−𝛾𝑡), and 𝐕𝐚𝐫(𝑋) = 𝑁0𝑒−𝛾𝑡(1 − 𝑒−𝛾𝑡); 𝑁0 is the number of initial radioactive nuclei. Eq. (2) changes
pparently little in relation to the exponents of its factors. However, this is substantially deeper and has to do with what we said
bove about the birth and death process (BDP). Which we explain later in section 4.2. Then the solution they offer (Foster et al.)
or the master Eq. (3), obtaining the binomial distribution (stochastic process) is

𝑃𝑁0
(𝑡) =

(

𝑁0
𝑥

)

𝑃 𝑥(𝑡)
(

1 − 𝑃 (𝑡)
)𝑁0−𝑥 =

(

𝑁0
𝑥

)

(

1 − 𝑒−𝛾𝑡
)𝑥𝑒−(𝑁0−𝑥)𝛾𝑡. (4)

o better insight into the above equations (models) (2) to (4), let us point out the following concepts: Despite the fact that the
uestis model is based on more deterministic and elementary principles, we must say that their model is more accurate and suitable

or radioactive decay than the model by Foster et al. Because Huestis’s is similar to the model based on a pure stochastic death
rocess —In particular, it is the so-called linear death process, where the parameter is proportional to the transition (decay) rate,
.e., 𝜇𝑛 = 𝑛𝜇.1 As we demonstrate in Section 4— that it is more suitable for the decay of nuclei. And Foster’s et al. despite being
ased on the theory of master equations, his model is based on a birth process — to be precise, it is based on the so-called Yule

Process, which describes the growth of a physical or biological population—. This implies that populations (in this case of radioactive
nuclei) grow, and do not decrease as happens in the reality. In figures 2-(a) and (b), we show the plots (PDFs) of these two models
together with the stochastic models that we propose for the Poisson Process (see Section 4 𝑦 4.3). For a fuller discussion of these
stochastic processes, see Refs. [3,18,30,32,33].

4. Master equation and stochastic models

In this section, we propose a model based on the Chapman–Kolmogorov equations (CKE) for a discrete random variable (d.r.v.)
in continuous time, known as the master equations [2,3,18] in statistical and quantum physics. We do so, specifically, for a two-state
or level system, which is enough to get the two stochastic models based on the binomial and Poisson distributions.

4.1. Master equation and Chapman–Kolmogorov equations (CKE)

Chapman–Kolmogorov equations (CKE): The Chapman–Kolmogorov equations are a set of equations that describe the time
evolution of a Markov chain. These are stochastic model that describes the random evolution of a system through a series of discrete
states (either discrete or continuous time). Suppose that the Markov chain has a set of states 1, 2,… , 𝑁 and that the transition
probability of going from state 𝑖 to state 𝑗 in one-time step is 𝑝𝑖,𝑗 . Then, the discrete-time Chapman–Kolmogorov equations are
expressed as follows:

𝑃 (𝑛+𝑚)
𝑖,𝑗 =

𝑁
∑

𝑘=1
𝑃 (𝑛)
𝑖,𝑘 𝑃

(𝑚)
𝑘,𝑗

where 𝑃 (𝑛)
𝑖,𝑗 is the probability that the chain will be in state 𝑗 after 𝑛 time steps, starting from state 𝑖. The Chapman–Kolmogorov

equations are based on the idea that the probability of reaching a final state after 𝑛 + 𝑚 steps can be resolved into the sum of the
probabilities of reaching each possible intermediate state after 𝑛 steps, and then reach the final state after 𝑚 steps. This equation is
important for the analysis of Markov chains, as it allows us to calculate the probability that the chain will be in any state after an
arbitrary number of steps, given knowledge of the one-step transition probabilities.

Now we define a Transition probability matrix function (TPMF) for a Continuous-time Markov chain (CTMC) 𝑋(𝑡) (see [18]
chap.16, [32] chap.6, [33] chap.VI, and [30]) chap.3 with the conditional probabilities

𝑃𝑖𝑗 (𝑡) = 𝐏[𝑋(𝑠 + 𝑡) = 𝑗|𝑋(𝑠) = 𝑖]; 𝑖, 𝑗 ∈  , 0 ≤ 𝑡 <∞

where  is the state space. 𝑃𝑖𝑗 (𝑡) are called transition probability functions, and 𝐏 = [𝑃𝑖𝑗 (𝑡)], is called the transition probability matrix
function (TPMF). The Chapman–Kolmogorov discrete (d.r.v.) equations take the continuous-time form:

𝑃𝑖𝑘(𝑠 + 𝑡) =
∑

𝑗∈
𝑃𝑖𝑗 (𝑠)𝑃𝑗𝑘(𝑡), 𝑖, 𝑘 ∈  , 𝑠, 𝑡 ≥ 0 (5)

And in matrix form they are: 𝐏(𝑠 + 𝑡) = 𝐏(𝑠)𝐏(𝑡). Making the change in Eq. (5) of 𝑠 by an infinitesimal interval ℎ, we obtain:
𝑃𝑖𝑘(ℎ+ 𝑡) =

∑

𝑗≠𝑘 𝑃𝑖𝑗 (ℎ)𝑃𝑗𝑘(𝑡)+𝑃𝑖𝑖(ℎ)𝑃𝑖𝑘(𝑡). So by carrying out the limit process, when ℎ→ ∞, we get for the case of a continuous-time

1 The 𝛾, 𝜆, and 𝜇 parameters can be used similarly in this reference Section 3.2 (as well as 4.4.2). However, starting from Section 4.2, we make a distinction,
7

specially between the 𝜆𝑖 and 𝜇𝑖 parameters for the different Birth and Death processes.
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stochastic process or CTMC, the Chapman–Kolmogorov differential equations: Referred to in the specialized stochastic literature as
he Kolmogorov’s backward differential equation (KBDE)2

𝑑
𝑑𝑡
𝑃𝑖𝑗 (𝑡) =

∑

𝑘≠𝑗
𝑞𝑖𝑘𝑃𝑘𝑗 (𝑡) + 𝑞𝑗𝑖𝑃𝑖𝑗 (𝑡) =

∑

𝑘∈
𝑞𝑖𝑘𝑃𝑘𝑗 (𝑡), 𝑖, 𝑗 ∈  , 0 ≤ 𝑡 <∞ (6)

𝑑𝐏(𝑡)
𝑑𝑡

= 𝐐𝐏 in matrix form

here 𝑃𝑖𝑗 (𝑡) is the probability that the stochastic process passes from state 𝑖 to state 𝑗 in time 𝑡, and 𝑞𝑖𝑘 is the state transition rate
to state 𝑘. The first addition on the right-hand side of Eq. (6) represents the probability that the stochastic process will go from
tate 𝑖 to any other state 𝑘 and then to state 𝑗, while the second addition represents the probability that the stochastic process stays
n state 𝑗 and then goes to state 𝑖. The solution methods for solving Kolmogorov equations are varied. We focus on solving them
sing matrix techniques [18,34]. However, in the references cited in this paper [3,18,30,32,33], you can find the different standard
olution methods for these systems. A very general solution to Eq. (6) is based on the exponential of a matrix [18,34], as follows

𝐏(𝑡) = exp (𝐐𝑡) = 𝑒𝐐𝑡 =
∞
∑

𝑛=0

[

𝐐𝑡
]𝑛

𝑛!
= 𝐈 +𝐐𝑡 + 𝐐2𝑡2

2!
+ 𝐐3𝑡3

3!
+⋯ 𝑡 ≥ 0 (7)

where 𝐏(0) = 𝐈 is the identity matrix, or 𝑃𝑖𝑗 (0) = 𝛿𝑖𝑗 the diagonal elements of the matrix. In addition, it is required that 𝐐 be a
uniform matrix in order for it to converge. In the next section, we develop the two-state model (two-state Markov Chain) and its
general solution.

4.2. Master equation: Two-state Markov process (TSMP)

Here we present the model of a two-state Markov Chain Process {𝐗(𝑡)}, using the master equation (Kolmogorov equation). We
obtain its general solution (in Appendix B) and generalize it to 𝑁 independent and indistinguishable two-state Markov Processes,
which gives us the master equation (model) for the binomial process and also for the so-called Birth-Death Process (BDP), which
the Poisson process can be derived.

TSMP System as Birth-Death Process (BDP): We can consider that a process of births and deaths is represented by the difference
of two states, i.e., 𝐍(𝑡) = 𝐒𝐚(𝑡) − 𝐒𝐝(𝑡), where 𝐒𝐚(𝑡) corresponds to an open switch (arrival counting process or open channel). and
𝐒𝐝(𝑡) to a switch closure (departure counting process or channel closed or busy). This system is governed by the following system
of stochastic equations (Kolmogorov backward equations), represented with the help of (6). Which can be represented in matrix form
with the corresponding transition rates (see (9)), namely (see Refs. [3,18,30,32,33]),

𝑑𝑃0𝑗 (𝑡)
𝑑𝑡

= −𝜆0𝑃0𝑗 (𝑡) + 𝜆0𝑃1𝑗 (𝑡)

𝑑𝑃𝑖𝑗 (𝑡)
𝑑𝑡

= 𝜇𝑖𝑃𝑖−1,𝑗 (𝑡) −
(

𝜆𝑖 + 𝜇𝑖
)

𝑃𝑖,𝑗 (𝑡) + 𝜆𝑖𝑃𝑖+1,𝑗 (𝑡), 𝑖 ≥ 1, (8)

here the boundary conditions are 𝑃𝑖,𝑗 (0) = 𝛿𝑖𝑗 . And the parameters 𝜆𝑖 and 𝜇𝑖 are called, respectively, the infinitesimal birth and death
ates.

We consider the two-state Markov Chain {𝐗(𝑡)} with states:  = {𝐬0, 𝐬1}, where state 𝐬0 represents that the channel is active and
state 𝐬1 represents that the channel is inactive or busy. Both the duration of the period of the active and busy states are random,
independent, exponential variables (they follow an exponential distribution) with 𝛼 and 𝛽 parameters respectively. Corresponding
to the transitions, 𝐐(𝐬0 → 𝐬1) = 𝛼 and 𝐐(𝐬1 → 𝐬0) = 𝛽. To solve this system, we need to establish the transition probability matrix
function (TPMF) 𝐏 = [𝑃𝑖𝑗 (𝑡)], using its infinitesimal generator 𝐐34

The probability of transitions in a time interval 𝛥𝑡 occur as follows: the probability (array elements) 𝑝𝑖𝑗 (𝑡) of de system going
rom 𝐬0 to 𝐬1 in interval 𝛥𝑡 is 𝑝01(𝛥𝑡) = 𝜆𝛥𝑡 + 𝑜(𝑡), and similary for 𝑝10(𝛥𝑡) = 𝜇𝛥𝑡 + 𝑜(𝑡). From Eq. (8), with 𝜆0 = 𝛼, 𝜆𝑖 = 0, 𝜇𝑖 = 0, for
𝑖 ≠ 0 and 𝜇1 = 𝛽. We obtain the differential equation system

𝑑𝑝00(𝑡)
𝑑𝑡

= −𝛼𝑝00(𝑡) + 𝛼𝑝10(𝑡)

𝑑𝑝10(𝑡)
𝑑𝑡

= 𝛽𝑝00(𝑡) − 𝛽𝑝10(𝑡),

This system have the infinitesimal generator matrix of the CTMF expressed by

𝐐 =
(

−𝛼 𝛼
𝛽 −𝛽

)

(9)

2 Kolmogorov’s forward differential equation (KFDE) also exists, which in matrix form is given by 𝑑𝐏(𝑡)
𝑑𝑡

= 𝐏𝐐. This is derived similarly to Kolmogorov’s
ackward differential equation (KBDE) (6), (see Refs. [18,30,32,33]). However, the solutions are practically similar, so in Sections 4.1 and 4.2, we will only use
q. (6).

3 The infinitesimal generator matrix is defined by 𝐐 = 𝑑𝐏(0)
𝑑𝑡

; and we can define it simply as the matrix 𝐐 = [𝑄𝑖𝑗 (𝑡)], (see [18] chap.16), and [3] chap.3.
4 Remember that in elementary stochastic modeling, a two-state Markov Chain is represented by the matrix 𝐏 =

(

1 − 𝛼 𝛼
𝛽 1 − 𝛽

)

, which is a stationary
8

particular case of a 𝐏(𝑡) distribution for two states, (not to be confused with the matrix 𝐐).
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The TPMF, 𝐏 = [𝑃𝑖𝑗 (𝑡)] for small times 𝛥𝑡 can be expressed by

𝐏(𝑡) = 𝑒𝐐𝛥𝑡 = 𝐈 +𝐐𝛥𝑡 + 𝑜(𝑡)𝐄 =
[

1 − 𝛼𝛥𝑡 + 𝑜(𝑡) 𝛼𝛥𝑡 + 𝑜(𝑡)
𝛽𝛥𝑡 + 𝑜(𝑡) 1 − 𝛽𝛥𝑡 + 𝑜(𝑡)

]

(10)

here 𝐄 is square matrix of all ones. And 𝑜(𝑡) is defined as a quantity that tends to zero faster than 𝑡, as 𝑡→ 0; i.e., lim𝑡→0[𝑜(𝑡)∕𝑡] = 0.
o solve this system we can use the spectral expansion technique [18,34], for the infinitesimal generator 𝐐. Which we can expand the

nfinitesimal generator as 𝐐 = 𝐔Λ𝐔−𝟏 = 𝐔Λ𝐕 =
∑

𝑗∈ 𝜆𝑗𝐄𝑗 ; where Λ is a diagonal matrix represented by Λ = 𝑑𝑖𝑎𝑔[𝜆0, 𝜆1, 𝜆2,…],
nd 𝜆𝑗 are the eingenvalues of matrix 𝐐; i.e., 𝑑𝑒𝑡|𝐐 − 𝜆𝑗𝐈| = 0, and 𝐄𝑗 = 𝐮𝑗𝐯𝑇𝑗 , (𝐔𝐕−𝑇 = 𝐈) are the projection matrices, with 𝑗 ∈ .

the similarity matrix 𝐔, contains the right-eigenvector column 𝐮𝑗 , generated by the eigenvalue 𝜆𝑗 . Likewise, the jth row vector 𝐯𝑗
of 𝐕 = 𝐔−1 corresponds to the left-eigenvector of the eigenvalue 𝜆𝑗 .

Solution by spectral expansion: The equation for the evolution of the probability transition vector is

𝑑𝐩(𝑡)
𝑑𝑡

= 𝐐𝐩, where 𝐩(𝑡) =
[

𝑝0(𝑡)
𝑝1(𝑡)

]

And the matrix 𝐐 is defined in (9). With formal general solution

𝐩(𝑡) = 𝑒𝐐𝑡𝐩(0), where 𝐩(0) are the initial conditions.

It can be shown [18,34] that the matrix 𝐐 and Λ admit a diagonal exponential solution of the following form

𝐏(𝑡) = 𝑒𝐐𝑡 =
∞
∑

𝑛=0

𝑡𝑛

𝑛!
𝐐𝑛 =

∞
∑

𝑛=0

𝑡𝑛

𝑛!
[

𝐔Λ𝐔−𝟏]𝑛 ⟹ 𝑒𝐐𝑡 = 𝐔
∞
∑

𝑛=0

𝑡𝑛

𝑛!
[

Λ
]𝑛𝐔−𝟏 = 𝐔𝑒Λ𝑡𝐔−𝟏 (11)

Also 𝐔 is a similarity matrix. To solve, we form the system of differential equations composed of the matrix 𝐐 and the column
probability vector 𝐩(𝑡) = (𝑝0(𝑡), 𝑝1(𝑡))𝑇 , with the general initial condition: 𝐩(0) = (𝑝, 1−𝑝)𝑇 ; and normalization condition 𝑝0(𝑡)+𝑝1(𝑡) = 1.
n the particular case of the infinitesimal generator 𝐐 of our two-state system, we obtain the following

𝑑𝑒𝑡|𝐐 − 𝛼𝑗𝐈| = 𝑑𝑒𝑡
[

−𝛼 − 𝜆 𝛼
𝛽 −𝛽 − 𝜆

]

= 0 (12)

We get 𝜆(𝜆+ 𝛼 + 𝛽) = 𝜆2 + 𝜆𝛽 + 𝜆𝛼 = 0. From this, we can quickly verify that the eigenvalues of 𝐐 are 𝜆0 = 0 and 𝜆1 = −(𝛼 + 𝛽). With
the respective eigenvectors given by

𝐮0 =
[

1
1

]

; 𝐮1 =
[

𝛼
−𝛽

]

(13)

The matrix 𝐔 composed of the eigenvectors and its inverse 𝐔−1 make up the matrix 𝐐, as follows

𝐐 = 𝐔Λ𝐔−𝟏 =
(

1 𝛼
1 −𝛽

)(

0 0
0 −(𝛼 + 𝛽)

)

1
(𝛼 + 𝛽)

(

𝛽 𝛼
1 −1

)

(14)

Obtaining the general exponential solution (TPMF) of Eq. (10)

𝐏(𝑡) = 𝐔
(

1 0
0 𝑒−(𝛼+𝛽)𝑡

)

𝐔−𝟏 = 1
(𝛼 + 𝛽)

[

𝛽 + 𝛼𝑒−(𝛼+𝛽)𝑡 𝛼 − 𝛼𝑒−(𝛼+𝛽)𝑡

𝛽 − 𝛽𝑒−(𝛼+𝛽)𝑡 𝛼 + 𝛽𝑒−(𝛼+𝛽)𝑡

]

= 1
(𝛼 + 𝛽)

[

𝛽 𝛼
𝛽 𝛼

]

+ 𝑒−(𝛼+𝛽)𝑡

(𝛼 + 𝛽)

[

𝛼 −𝛼
−𝛽 𝛽

]

(15)

𝐏(𝑡) = 1
(𝛼 + 𝛽)

[

𝛼 + 𝛽 0
0 𝛼 + 𝛽

]

+ 1
(𝛼 + 𝛽)

[

−𝛼 𝛼
𝛽 −𝛽

]

− 𝑒−(𝛼+𝛽)𝑡

(𝛼 + 𝛽)

[

−𝛼 𝛼
𝛽 −𝛽

]

𝐏(𝑡) = 𝐈 + 1
(𝛼 + 𝛽)

𝐐 − 𝑒−(𝛼+𝛽)𝑡

(𝛼 + 𝛽)
𝐐 = 𝐈 + 1

(𝛼 + 𝛽)

(

1 − 𝑒−(𝛼+𝛽)𝑡
)

𝐐

where the solutions for initial conditions: 𝑝0(0) = 𝑝00(0) = 1, and 𝑝1(0) = 𝑝10(0) = 0, corresponding for states  = {𝐬0, 𝐬1}, Remember
that they refer to an active state — the first one — and an inactive state — the second one —. Nevertheless, the opposite initial
conditions can be chosen, i.e. 𝑝0(0) = 𝑝01(0) = 0, and 𝑝1(0) = 𝑝11(0) = 1, which would be given by the second column of the solution
matrix (15)

𝑝0(𝑡) = 𝑝00(𝑡) =
1

(𝛼 + 𝛽)

[

𝛽 + 𝛼𝑒−(𝛼+𝛽)𝑡
]

=
𝛽

(𝛼 + 𝛽)
+ 𝛼

(𝛼 + 𝛽)
𝑒−(𝛼+𝛽)𝑡

𝑝1(𝑡) = 𝑝10(𝑡) =
1

(𝛼 + 𝛽)

[

𝛽 − 𝛽𝑒−(𝛼+𝛽)𝑡
]

=
𝛽

(𝛼 + 𝛽)
−

𝛽
(𝛼 + 𝛽)

𝑒−(𝛼+𝛽)𝑡 (16)

Eqs. (16) are complemented by those mentioned in the text (obtained in the TPMF matrix (14)), that is,

𝑝01(𝑡) = 1
(𝛼 + 𝛽)

[

𝛼 − 𝛼𝑒−(𝛼+𝛽)𝑡
]

= 𝛼
(𝛼 + 𝛽)

− 𝛼
(𝛼 + 𝛽)

𝑒−(𝛼+𝛽)𝑡

𝑝11(𝑡) = 1
[

𝛼 + 𝛽𝑒−(𝛼+𝛽)𝑡
]

= 𝛼 +
𝛽

𝑒−(𝛼+𝛽)𝑡 (17)
9
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=

To find the stationary distribution —that is, steady and invariant—, which allows us to understand the behavior in the long term, we
apply the limit,

lim
𝑡→∞

𝑃𝑖𝑗 (𝑡) = 𝜋(𝑗) = 𝜋𝑗

and parameterize as follows (with the help of the two states {𝐬0 = 0, 𝐬1 = 1}): 𝜋0 = 𝜋(0) = 𝛼∕(𝛼 + 𝛽), 𝜋1 =
𝜋(1) = 𝛽∕(𝛼 + 𝛽) and 𝜃 = 𝛼 + 𝛽, which represent the stationary distributions. So, by (16) we get

𝑝00(𝑡) = 𝜋(1) + 𝜋(0)𝑒−(𝛼+𝛽)𝑡 =
(

1 − 𝜋0
)

+ 𝜋0𝑒−𝜃𝑡

𝑝10(𝑡) = (1 − 𝜋(0)) −
(

1 − 𝜋(0)
)

𝑒−(𝛼+𝛽)𝑡 =
(

1 − 𝜋0
)

(1 − 𝑒−𝜃𝑡) (18)

Similarity

𝑝01(𝑡) = 𝜋(0) + 𝜋(0)𝑒−(𝛼+𝛽)𝑡 = 𝜋0(1 − 𝑒−𝜃𝑡)

𝑝11(𝑡) = 𝜋(0) +
(

1 − 𝜋(0)
)

𝑒−(𝛼+𝛽)𝑡 = 𝜋0 +
(

1 − 𝜋0
)

𝑒−𝜃𝑡 (19)

We can observe, that

lim
𝑡→∞

𝑝01(𝑡) = lim
𝑡→∞

𝑝11(𝑡) = 𝜋(0) = 𝜋0

So we have found the long-run probability is 𝜋0, i.e., the stationary probability, which is independent of where the process starts.
Also, its probabilistic complements:

lim
𝑡→∞

𝑝00(𝑡) = lim
𝑡→∞

𝑝10(𝑡) = 𝜋(0) = 1 − 𝜋0

where we use the normalization condition 𝜋0 + 𝜋1 = 1, (Kolmogorov’s first axiom: ∑∞
𝑗=1 𝜋𝑗 = 1).

4.3. Master equation: Poisson’s process as a pure death process (PDP)

Here we introduce the Kolmogorov’s forward differential equation (KFDE) in its general form — similarly to (KBDE) (8) — and
for the particular case of the Poisson process — as a Pure Death Process (PDP)— for our radioactive decay system. However, this is
a fairly general formulation applicable to other systems of the Poisson type.

𝑑𝑃0𝑗 (𝑡)
𝑑𝑡

= −𝜆0𝑃0𝑗 (𝑡) + 𝜇1𝑃1𝑗 (𝑡)

𝑑𝑃𝑖𝑗 (𝑡)
𝑑𝑡

= 𝜆𝑗−1𝑃𝑖,𝑗−1(𝑡) −
(

𝜆𝑗 + 𝜇𝑗
)

𝑃𝑖,𝑗 (𝑡) + 𝜇𝑗+1𝑃𝑖,𝑗+1(𝑡), 𝑗 ≥ 1, (20)

Pure Death Process (PDP): In fact, both in the KFDE (20) and (KBDE) (8), we have that the general equations are the second, from
which we can extract all the information of the system. For a PDP-type Poisson process, we have: from the second equation of (20)
we make the following changes, —including the boundary conditions at 𝑛 = 0 and 𝑛 = 𝑁0 —: 𝜆𝑗 = 𝜆𝑗−1 = 0 and 𝜇𝑗 = 𝜇𝑗+1 = 𝜇𝑛+1 = 𝜇.
Also 𝑃𝑖,𝑗 (𝑡) = 𝑃𝑛(𝑡), and 𝑃𝑖,𝑗+1(𝑡) = 𝑃𝑛+1(𝑡). We have that parameter (transition rate) 𝜇 = 1∕𝜏, i.e., decay rate per unit time.

𝑑𝑃𝑁0
(𝑡)

𝑑𝑡
= −𝜇𝑃𝑁0

(𝑡) = −1
𝜏
𝑃𝑁0

(𝑡)

𝑑𝑃𝑛(𝑡)
𝑑𝑡

= −𝜇𝑃𝑛(𝑡) + 𝜇𝑃𝑛+1(𝑡), 𝑁0 − 1 ≥ 𝑛 > 1, (21)

𝑑𝑃0(𝑡)
𝑑𝑡

= 𝜇𝑃1(𝑡) =
1
𝜏
𝑃1(𝑡)

the initial probability distribution is 𝜋(0) = 𝑃𝑛=𝑁0
(𝑡 = 0) = 𝛿𝑁,𝑁0

= 𝛿𝑛,𝑛0 . Solving the first equation of (21), we obtain:
𝑃𝑁0

(𝑡) = 𝑒−𝜇𝑡 = 𝑒−𝑡∕𝜏 . So, the time-dependent solution for 𝑃𝑛(𝑡) is given by

𝑃𝑛(𝑡) =
(𝜇𝑡)𝑁0−𝑛

(𝑁0 − 𝑛)!
𝑒−𝜇𝑡 =

(𝑡∕𝜏)𝑁0−𝑛

(𝑁0 − 𝑛)!
𝑒−𝑡∕𝜏 𝑁0 ≥ 𝑛 > 1,

𝑃0(𝑡) = 1 −
𝑁0−1
∑

𝑛=0

(𝜇𝑡)𝑛

𝑛!
𝑒−𝜇𝑡 = 1 −

𝑁0−1
∑

𝑛=0

(𝑡∕𝜏)𝑛

𝑛!
𝑒−𝑡∕𝜏 (22)

In Appendix B, we show a derivation of the solutions (22), (same as (24)). We now briefly present a description of the sojourn time.
Which we use to theoretically measure the residence time in the radioactive decay phenomenon of our Poisson stochastic model.

4.3.1. Sojourn time
The sojourn time (waiting time in any state) is an intrinsic characteristic of any Markov process, where the change of state of the

random variable is exponentially distributed (see [18] chap.16, and [33] chap.VI). In figure 1, we show a sketch of a Linear-Pure
Death Process (L-PDP), (i.e., for 𝜇𝑘 = 𝑘𝜇). Likewise, we show the sojourn times in each stage and how the transitions follow an
exponential distribution (decaying), which also has the memoryless property. Together we can apply to obtain the Poisson process as
10

was done with the help of Eqs. (21), whose solution is (22).
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Fig. 1. Here we show the Linear-Pure Death Process (L-PDP): (a) Sketch of typical trajectories for a continuous-time Markov process (CTMP), in particular
the pure death process PDP, which very accurately emulates a Poisson-type decay process, where the number of particles 𝑛 decreases from 𝑛 = 𝑁0 at time 𝑡 = 0 to
𝑛 = 0 at 𝑡 ≠ 0. In addition, the sojourns times 𝑋𝑛 = 𝜖𝑛 can be displayed, where 𝑛 = 0, 1,… ., 𝑁0 − 1, 𝑁0. (b) The curves represent that the transition probabilities
are exponentially distributed with decay parameters 𝜇𝑛 the death rate (𝜇𝑛 = 𝑛𝜇). For our system 𝜇1 = 𝜇2 = ⋯ = 𝜇𝑁0

= 𝜇 = 1∕𝜏, (without including a specific value
of the physical decay parameter).

The sojourn time in state 𝑁0 is denoted by 𝑋𝑁0
. Then, let 𝑋(𝑡) be a linear death process, denoting the number of survivors in the

population at time 𝑡. With parameter 𝜇𝑛 = 𝑛𝜇 for 𝑛 = 0, 1, 2,… , 𝑁0. And let 𝜖1, 𝜖2,… , 𝜖𝑁0
, denote the death times of the members,

individuals, or components of the cluster —the succession of death times should not necessarily have a chronological order of death,
see Fig. 1-(a)—. 𝑋𝑁0

is the time of the earliest death or 𝑋𝑛 = 𝑚𝑖𝑛{𝜖1, 𝜖2,… , 𝜖𝑁0
}. Since the memoryless property of the exponential

distribution holds and the lifetimes are independent, we have

𝑃𝑟{𝑋𝑛 > 𝑡} = 𝑃 (𝑚𝑖𝑛{𝜖1, 𝜖2,… , 𝜖𝑁0
} > 𝑡)

= 𝑃 (𝜖1 > 𝑡, 𝜖2 > 𝑡,… , 𝜖𝑁0
> 𝑡)

= 𝑃 (𝜖1 > 𝑡)𝑃 (𝜖2 > 𝑡)⋯𝑃 (𝜖𝑁0
> 𝑡)

𝑃𝑟{𝑋𝑛 > 𝑡} =
[

𝑃 (𝜖1 > 𝑡)
]𝑁0 = 𝑒−𝑁0𝜇𝑡 (23)

That is, has an exponential distribution with parameter 𝑁0𝜇. Taking into account the sojourn time in the transition probability, the
solution Eqs. (22) are transformed as

𝑃𝑟{𝑋(𝑡) = 𝑛} = 𝑃𝑛(𝑡) =
(𝑁0𝜇𝑡)𝑁0−𝑛

(𝑁0 − 𝑛)!
𝑒−𝑁0𝜇𝑡 =

(𝑁0𝑡∕𝜏)𝑁0−𝑛

(𝑁0 − 𝑛)!
𝑒−𝑁0𝑡∕𝜏 𝑁0 ≥ 𝑛 > 1,

𝑃𝑟{𝑋(𝑡) = 0} = 𝑃0(𝑡) = 1 −
𝑁0−1
∑

𝑛=0

(𝑁0𝜇𝑡)𝑛

𝑛!
𝑒−𝑁0𝜇𝑡 = 1 −

𝑁0−1
∑

𝑛=0

(𝑁0𝑡∕𝜏)𝑛

𝑛!
𝑒−𝑁0𝑡∕𝜏 (24)

This is the stochastic Poisson model based on a linear pure death process (L-PDP), considering the sojourn time in each state of the
system.

4.4. Poisson’s process as a pure birth process (PBP)

In Section 4.2 we show the Birth-Death process (BDP) modeled with Eqs. (8). Then, a (BDP) process is called a pure birth process
(PBP) if 𝜆𝑖 = 𝜆 in (8) for all 𝑖 ≥ 0 and 𝜇𝑖 = 0 for all 𝑖 ≥ 0. It can be shown relatively easily that by solving Eqs. (8) with 𝑁0(0) = 0, the
typical or standard Poisson distribution (29) —coming from a PBP— is obtained as a solution (see [18,30,32,33]). We now apply the
distribution to the radioactive decay process of nuclei —which can be visualized as in the toy model with multi-sided dice 2.1—.
This Poisson model is to be universally used from the didactic teaching of the theory of probability and statistics. We can focus
solely on its application to the phenomenon of radioactive decay, beginning with the perspective of radioactive dice.

In order to there to be an equivalence between the nuclei and the dice, it is necessary to increase, as already mentioned, the
number of faces of each die involved, which represents each radioactive isotope. As a first case, it is shown that all the dice (nuclei) in
decay as a whole are distributed according to a Poisson distribution (remembering that it must be fulfilled that the number of events
is very large and the associated probability very small), because this distribution often provides a good model for the probability
distribution of the 𝑋 number of weird events that occur in space, time, or any other dimension, where the decay constant 𝜆 is
a very sensitive parameter —together with the decay time period— to the values of each radioisotope and to the average value
of r. v. 𝑋. Thus, we have for each dice toss, the result is subject to the random variable 𝑋 ∼ 𝑓 (𝑥) = 𝑝(𝑥) = 𝜆𝑥𝑒(−𝜆)∕𝑥! (Poisson
distribution). It can be easily demonstrated that its moment-generating function (MGF) is given by 𝑀𝑋 (𝑡∗) = 𝐸[𝑒(𝑋𝑡∗)] = 𝑒𝜆(𝑒𝑡

∗−1),
(𝑡∗ does not represent time, it is a dummy parameter, as we defined it in paragraph 2.1). Now we have that for a set of 𝑛 discrete
random variables, i.e. 𝑋 ,𝑋 ,… , 𝑋 with Poisson distribution each, the sum of all of them must result in another Poisson distribution
11
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Fig. 2. In this figure, we show the plots corresponding to the four (stochastic) probability distribution models studied in this paper. In (a), we compare the
model of Foster et al. with the Huestis model. The former utilizes the binomial PDF (4), exhibiting strong characteristics of a Pure Birth Process (PBP) (Yule
Process). In contrast, Huestis’s model employs the binomial PDF (2), showing strong features of the Pure Death Process (PDP). Both models operate on a relatively
long timescale due to the small number of initial radioisotopes (RIs). In (b), we again compare the same models (4) vs. (2), but this time for a greater number
of initial radioactive isotopes (RIs), resulting in a relatively short timescale due to the increased quantity of (RIs). In (c) and (d), we also compare our proposals
based on the Poisson distribution versus the standard Poisson distribution. We juxtapose the Pure Birth Process (PBP) used as the standard in most statistical
and probabilistic application studies with our proposed model, i.e., the Pure Death Process (PDP), utilizing the sojourn time which is fundamental in this process
(see Sections Section 4.3, 4.3.1, Fig. 1, (22) and (24)). The effects on the time scales are similar to those observed for the binomial distribution process. Also,
the figure (e) inset in (d), represents the Poisson distribution as a function of the number 𝑁0 = 𝑛, for fixed times (dimensionless time 𝑡∕𝜏) shown in the same
figure. It should be noted that for large 𝑛 the PDF fluctuates too much and suffers from overflow. For all plots we use radioisotope: 18𝐹 with parameter (decay
constant): 𝜇 = 𝜆 = 6.313 × 10−3 min−1. Initially 20% of isotopes decaying in all four combinations.
Source: Source parameter: [12,13].

—similar to the radioactive dice toy model in [4,9] shown in paragraph 2.1—, as we show below. Using the moment generating
function, (see for example: [18,27,28,32,35–37]). We have 𝑋𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋𝑗 ) = 𝑓 (𝑥𝑗 ), with 𝑗 = 1, 2,… , 𝑛; so we get

𝑀𝑋 (𝑡∗) = 𝐸[𝑒(𝑡
∗𝑋𝑗 )] = 𝑒𝜆𝑗 (𝑒

𝑡∗−1) (25)

Adding all the random variables (with 𝛴𝑛 =
∑𝑛
𝑗=1𝑋𝑗), we have

𝑀𝛴 (𝑡∗) = 𝐸[𝑒(𝑡
∗𝛴𝑛)] = 𝐸[𝑒(𝑋1+𝑋2+⋯+𝑋𝑛)𝑡∗ ]

=
𝑛
∏

𝑗=1
𝐸[𝑒(𝑥𝑗 𝑡

∗)] = 𝐸[𝑒(𝑥1𝑡
∗)]𝐸[𝑒(𝑥2𝑡

∗)]⋯𝐸[𝑒(𝑥𝑛𝑡
∗)]

= 𝑒𝜆1(𝑒
𝑡∗−1)𝑒𝜆2(𝑒

𝑡∗−1) ⋯ 𝑒𝜆𝑛(𝑒
𝑡∗−1)

=
𝑛
∏

𝑗=1
exp [𝜆𝑗 (𝑒𝑡

∗
− 1)] = exp

[ 𝑛
∑

𝑗=1
𝜆𝑗 (𝑒𝑡

∗
− 1)

]

(26)

This expression is once again a Poisson distribution for the 𝑛 r.v.; with 𝜆𝑗 = ⟨𝑥𝑗⟩ the mean of each r.v. (in this case, they are
dimensionless parameters that represent the expected value). We can also add directly (without using the MGF method) two or more
independent random variables (i.r.v.) as a Poisson Process, which should result in another Poisson process. In such a way that we
have initially two r. v. 𝑋 and 𝑌 . We are interested in the sum, i.e. 𝑍 = 𝑋+𝑌 , where 𝑌 = 𝑍−𝑋, so we proceed to add both variables.
Following this trend, we can generalize to the sum of 𝑛 i.r.v. (that is, 𝑋𝑗 , with 𝑗 = 1, 2,… , 𝑛) as a Poisson process. In both cases
we obtain the following (in the Appendix A we make the complete demonstration of both formulations). For two independent and
identically distributed random variables (i.i.d.-r.v.) 𝑍 = 𝑋 + 𝑌 , where 𝑋 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋, 𝜆) = 𝑃𝑋 (𝑥), and 𝑌 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑌 , 𝜇) = 𝑃𝑌 (𝑦),
and with help of Discrete Convolution Formula, we get 𝑃𝑍 (𝑧) = 𝑃𝑋+𝑌 (𝑧) = 𝑃𝑋 (𝑥) ∗ 𝑃𝑌 (𝑦) =

∑

𝑥 𝑃𝑋 (𝑥)𝑃𝑌 (𝑦) =
∑

𝑥 𝑃𝑋 (𝑥)𝑃𝑌 (𝑧 − 𝑥)
𝑒−(𝜆+𝜇) (𝜆 + 𝜇)𝑧.
12

⇒ 𝑃𝑍 (𝑧) = 𝑧!
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So 𝑍 = 𝑋 + 𝑌 is Poisson distributed once again, and we just sum the parameters, which are the sum of means. If we make the
hange 𝜆→ 𝜆1 and 𝜇 → 𝜆2, so that 𝑍 → 𝑆2 = 𝑋1 +𝑋2, then the above equation takes the form

𝑃𝑆2 (𝑠2) = 𝑃𝑋1+𝑋2
(𝑠2) = 𝑃𝑋1

(𝑥1) ∗ 𝑃𝑋2
(𝑥2) =

𝑒−(𝜆1+𝜆2)

(𝑠2)!

(

𝜆1 + 𝜆2

)𝑠2
(27)

where 𝑠2 = 𝑥1 + 𝑥2. But, what happens about a sum of more than two independent Poisson random variables? Suppose 𝑋1, 𝑋2, 𝑋3
are random variables independent Poisson, and then (𝑋1 + 𝑋2) is then Poisson r.v., and then we can add on 𝑋3 and still have a
Poisson r.v. So 𝑋1 +𝑋2 +𝑋3 must be a Poisson random variable. And so on, increasing to 𝑛 i.r.v. of Poisson. In order to generalize,
we have the 𝑛 i.r.v., with 𝑋1, 𝑋2,… , 𝑋𝑛. Now, let 𝑆𝑛 = 𝑋1 +𝑋2 +⋯+𝑋𝑛 be the sum of 𝑛 i.r.v. of an independent trial process with
common PDF (Poisson), defined on the integers. So, 𝑆𝑛 = (𝑋1 +𝑋2 +𝑋3 +𝑋4 ⋯)+𝑋𝑛 = 𝑆𝑛−1 +𝑋𝑛. We have that i.r.v. are distributed
by 𝑋1 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋1, 𝜆1) = 𝑃𝑋1

(𝑥1) ⇒ 𝑃 (𝑥1) = 𝜆𝑥11 𝑒
(−𝜆1)∕(𝑥1!); 𝑋2 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋2, 𝜆2) = 𝑃𝑋2

(𝑥2) ⇒ 𝑃 (𝑥2) = 𝜆𝑥22 𝑒
(−𝜆2)∕(𝑥2!);…… ;𝑋𝑛 ∼

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋𝑛, 𝜆𝑛) = 𝑃𝑋𝑛 (𝑥𝑛) ⇒ 𝑃 (𝑥𝑛) = 𝜆𝑥𝑛𝑛 𝑒(−𝜆𝑛)∕(𝑥𝑛!). Again, we use the Discrete Convolution Formula for several independent random
variables,

𝑃𝑆𝑛 (𝑠𝑛) = 𝑃𝑋1+𝑋2+⋯+𝑋𝑛 (𝑠𝑛) = 𝑃𝑋1
(𝑥1) ∗ 𝑃𝑋2

(𝑥2) ∗ ⋯ ∗ 𝑃𝑋𝑛 (𝑥𝑛)

=
𝑠𝑛
∑

𝑥1 ,…,𝑥𝑛
𝑠𝑛=𝑥1+𝑥2⋯+𝑥𝑛

𝑃𝑋1
(𝑥1)𝑃𝑋2

(𝑥2)⋯𝑃𝑋𝑛 (𝑥𝑛)

=
𝑠𝑛
∑

𝑥1 ,…,𝑥𝑛
𝑠𝑛=𝑥1+𝑥2⋯+𝑥𝑛

𝜆𝑥11 𝑒
−𝜆1

(𝑥1!)
𝜆𝑥22 𝑒

−𝜆2

(𝑥2!)
⋯
𝜆𝑥𝑛𝑛 𝑒−𝜆𝑛
(𝑥𝑛!)

= 𝑒−
∑𝑛
𝑗=1 𝜆𝑗

(𝑠𝑛!)

(

𝜆1 + 𝜆2 + 𝜆3 +⋯ 𝜆𝑛

)𝑠𝑛

= 𝑒−
∑𝑛
𝑗=1 𝜆𝑗

(𝑠𝑛!)

( 𝑛
∑

𝑗=1
𝜆𝑗

)𝑠𝑛
(28)

This is the probability mass function (p.m.f.) for 𝑛 random variables distributed as Poisson process model. Where 𝑆𝑛 = 𝑋1 + 𝑋2 +
𝑋3 ⋯ + 𝑋𝑛−1 + 𝑋𝑛 = 𝑆𝑛−1 + 𝑋𝑛, and the parameters 𝜆𝑗 = ⟨𝑥𝑗⟩ are the mean (expected value). Therefore ∑𝑛

𝑗=1 𝜆𝑗 =
∑𝑛
𝑗=1⟨𝑥𝑗⟩ = ⟨𝑠𝑛⟩

are simply the sum of expected values. Thus, we can write in a more compact form Eq. (28), which coincides with the known most
basic Poisson distribution.

𝑃𝑆𝑛 (𝑠𝑛) =
𝑒−⟨𝑠𝑛⟩

𝑠𝑛!
⟨𝑠𝑛⟩

𝑠𝑛 =
(

⟨𝑠𝑛⟩𝑠𝑛
𝑠𝑛!

)

𝑒−⟨𝑠𝑛⟩ (29)

hus, based on a standard time-dependent Poisson process model (see [18,29,30,32,33]) this is expressed as

𝑃𝑋=𝑛(𝑡; 𝜆) =
(𝜆𝑡)𝑛

𝑛!
𝑒−𝜆𝑡

alid for a single event (decay). However for the case of the sum of n events, where we have the total value of nuclei are 𝑛 = 𝑁0
and 𝑆𝑛 = 𝑛1+𝑋2+𝑋3 ⋯𝑋𝑛 → 𝑋, for simplicity and to get rid of sub-indexes. The value of the parameter or decay constant depends
n each substance (radioisotopes) in each event, which would have the same value for all the nuclei involved (unless otherwise
tated), and it would be 𝜆1 = 𝜆2 = ⋯ 𝜆𝑛 = 𝜆. In addition, the process it depends on time, i.e. 𝜆 → 𝜆𝑡.5 So, ∑𝑛=𝑁0

𝑗=1 (𝜆𝑗 𝑡) = 𝑁0𝜆𝑡, so we
obtain

𝑃𝑛(𝑡) =
[

(𝑁0𝜆𝑡)𝑛

𝑛!

]

𝑒−𝑁0𝜆𝑡 (30)

hich similarly includes sojourn time as in (24), (see Section 4.3.1).

.4.1. Partial nuclear decay : Prior and conditional probability
To get a clearer insight of the radioactive decay process, let’s make an arbitrary partition (for example: assuming that 𝑋𝑚 < 𝑋𝑛,

rom the initial population, divide the entire population: 𝑁0 into strata or subpopulations 𝑁0 ≫ 𝑥 and so on) in the total amount
f radioactive isotopes (nuclei or atoms), considering that at the beginning of the reaction they are divided into two groups (those
hat undecayed immediately in the first period of time, and those that do decayed in the next period of time, i.e. the elapsed time
etween the (𝑛−1)st and the 𝑛th event.) That is, one of the groups decays faster than the other (the smaller group to be precise), as
sually happens in reality, since not all the nuclei (isotopes) involved decay at the same time. For this we consider two sums (one
or each group) of the total isotopes (𝑁0), where one can be much larger than the other, initially being also independent Poisson
andom variables. Then, we first calculate the prior probability using the result of Eq. (28) as follows: the sum is rewritten in two
erms for both groups, then the probability distribution for the total of the two groups is obtained, that is

𝑃𝑆𝑛 (𝑠𝑛) = 𝑒−
∑𝑛
𝑗=1 𝜆𝑗

(𝑠𝑛!)

( 𝑛
∑

𝑗=1
𝜆𝑗

)𝑠𝑛

5 Actually, this is justified by introducing the sojourn time seen in Section 4.3.1.
13
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= 𝑒−
∑𝑚
𝑗=1 𝜆𝑗

(𝑠𝑚!)
𝑒−

∑𝑛
𝑗=𝑚+1 𝜆𝑗

(𝑠𝑚+1!)

[ 𝑚
∑

𝑗=1
𝜆𝑗 +

𝑛
∑

𝑗=𝑚+1
𝜆𝑗

]𝑠𝑛

= 𝑒−𝛬𝑚
(𝑠𝑚!)

𝑒−𝛬𝑛
(𝑠𝑚+1!)

[

𝛬𝑚 + 𝛬𝑛

]𝑠𝑛
= 𝑒−𝛬𝑚

(𝑠𝑚!)
𝑒−𝛬𝑛
(𝑠𝑚+1!)

𝑠𝑛
∑

𝑘=0

(

𝑠𝑛
𝑘

)

𝛬𝑠𝑛−𝑘𝑚 𝛬𝑘𝑚

= 𝑒−(𝛬𝑚+𝛬𝑛)

(𝑠𝑚!)(𝑠𝑚+1!)

𝑠𝑛
∑

𝑘=0

(

𝑠𝑛
𝑘

)

𝛬𝑠𝑛−𝑘𝑚 𝛬𝑘𝑚 (31)

Which is equivalent to Eq. (28), where we simply split the total amount of isotopes into two groups (arbitrarily). Where, 𝛬𝑚 =
∑𝑚
𝑗=1 𝜆𝑗

and 𝛬𝑛 =
∑𝑛
𝑗=𝑚+1 𝜆𝑗 ; 𝑠𝑚! = 𝑥1!𝑥2!⋯ 𝑥𝑚! and 𝑠𝑚+1! = 𝑥𝑚+1!𝑥𝑚+2!⋯ 𝑥𝑛!. If considered as a stochastic Poisson model, of the type of

quations Eqs. (28) and (30), we obtain a split version of the prior probability factored, but not completely separable due to the
actorials in the denominator, that is

𝑃𝑋 (𝑡; 𝜆;𝑁0) =
(𝛬𝑚𝜆𝑡 + 𝛬𝑛𝜆𝑡)𝑥

(𝑠𝑚!)(𝑠𝑚+1!)
𝑒−𝛬𝑚𝜆𝑡𝑒−𝛬𝑛𝜆𝑡

here 𝑁0 = 𝑁01 +𝑁02 = 𝛬𝑚 + 𝛬𝑛, (𝛬𝑚 < 𝛬𝑛) the partition in the two groups above. This equation is also equivalent to (30).

.4.2. Conditional probability, and conditional expected value
Now, we calculate the conditional probability and the conditional expected value, similarly to the one obtained in Eq. (31). That

s, as mentioned above, we split (arbitrarily) our sample space into two partitions: Let 𝑆𝑛 = 𝑋1+𝑋2+⋯+𝑋𝑚+𝑋𝑚+1+⋯+𝑋𝑛 = 𝛬𝑚+𝛬𝑛
e the same sum of 𝑛 independent Poisson random variables. Thereby, the conditional probability is

𝑃𝑆𝑛 [𝑋𝑚 = 𝑠𝑚|𝑋𝑚 +𝑋𝑛 = 𝑠𝑛] =
𝑃 [𝑋𝑚 = 𝑠𝑚, 𝑋𝑚 +𝑋𝑛 = 𝑠𝑛]

𝑃 [𝑋𝑚 +𝑋𝑛 = 𝑠𝑛]

=
𝑃 [𝑋𝑚 = 𝑠𝑚, 𝑋𝑛 = 𝑠𝑛 − 𝑠𝑚]

𝑃 [𝑋𝑚 +𝑋𝑛 = 𝑠𝑛]

=
𝑃 [𝑋𝑚 = 𝑠𝑚]𝑃 [𝑋𝑛 = 𝑠𝑛 − 𝑠𝑚]

𝑃 [𝑋𝑚 +𝑋𝑛 = 𝑠𝑛]

=
𝑒−𝛬𝑚𝛬𝑠𝑚𝑚
(𝑠𝑚!)

𝑒−𝛬𝑛𝛬(𝑠𝑛−𝑠𝑚)
𝑛

(𝑠𝑛 − 𝑠𝑚)!

[

𝑒−(𝛬𝑚+𝛬𝑛)

(𝑠𝑛!)

]−1

=
(𝑠𝑛!)

(𝑠𝑛 − 𝑠𝑚)!(𝑠𝑚!)
𝛬𝑠𝑚𝑚 𝛬

(𝑠𝑛−𝑠𝑚)
𝑛

(

𝛬𝑚 + 𝛬𝑛
𝛬𝑚 + 𝛬𝑛

)𝑠𝑚

=
(

𝑠𝑛
𝑠𝑚

)(

𝛬𝑚
𝛬𝑚 + 𝛬𝑛

)𝑠𝑚( 𝛬𝑛
𝛬𝑚 + 𝛬𝑛

)𝑠𝑛−𝑠𝑚
(32)

hat is, the conditional distribution of 𝑋𝑚 = 𝑠𝑚 given that 𝑋𝑚 +𝑋𝑛 = 𝑠𝑛 (Assuming that 𝑋𝑚 < 𝑋𝑛) is the Binomial Distribution with
arameters 𝑠𝑛 and 𝛬𝑚∕(𝛬𝑚 +𝛬𝑛). From this, it is easy to notice that the expected value for this new binomial distribution is given by:

𝐄[𝑋𝑚|𝑋𝑚 +𝑋𝑛 = 𝑠𝑛] = 𝑠𝑛

(

𝛬𝑚
𝛬𝑚 + 𝛬𝑛

)

(33)

e can notice that when comparing the Eqs. (32) and (33) with Eq. (4) and its mean, and making the following changes 𝛬𝑛 → 𝑁01𝜆𝑡
nd 𝛬𝑚 → 𝑁02𝜆𝑡, (with 𝑁0 = 𝑁01 + 𝑁02, i.e. the total number of nuclei remains constant), we get that: 𝛬𝑚∕(𝛬𝑚 + 𝛬𝑛) = 𝑁02

𝑁0
=

(1 − 𝑒−𝜆𝑡) = 𝑝(𝑡), the decay probability, and 𝛬𝑛∕(𝛬𝑚 + 𝛬𝑛) =
𝑁01
𝑁0

= 𝑒−𝜆𝑡 = [1 − 𝑝(𝑡)] = 𝑞(𝑡), the undecayed probability. We want to
rgue that

𝑁01 = 𝑁0𝑒
−𝜆𝑡

𝑁02 = 𝑁0(1 − 𝑒−𝜆𝑡) (34)

lso with mean 𝐄(𝑋) = 𝑁0(1 − 𝑒−𝜆𝑡), and 𝐕𝐚𝐫(𝑋) = 𝑁0𝑒−𝜆𝑡(1 − 𝑒−𝜆𝑡). Eqs. (34), prove their validity because they are similar to those
btained in the models with the Eqs. (1), (2), and (4). It is worth noting that these equations also allow us to see that the probability
f decay of radioisotopes is updated at each time interval; because it is an exponential stochastic process (i.e. a Markov chain as a
rocess memoryless).

In summary, the previous results in Eqs. (32), (33), and (34), based on the so-called pure birth process (PBP) (of Poisson and
inomial), allow us to observe that in reality the behavior and evolution in the radioactive decay of a isotopes system —being
onditioned to partial decay for different periods of time— this will follow a binomial distribution, such a distribution comes from
ssuming that initially, it is an independent Poisson random variable and that not all isotopes decay simultaneously. This shows
he trend of isotopes radioactive decay to follow a binomial distribution when the decay is initially conditioned, splitting the total
mount of radioisotopes (as mentioned above, those not yet decaying and those beginning to decay). We should also keep in mind
hat this is a random physical phenomenon in which undecayed isotopes of a first type (say 𝐴 with 𝑁01 in Eq. (34)), decay to a
econd type of radioisotopes (say 𝐵 with 𝑁02 in Eq. (34)); see a more physical-deterministic treatment in the classic treatise by
enneth S. Krane: Introductory Nuclear Physics, ([11] chapter 6), where we obtains equations similar to (34).
14
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5. Fluctuations and entropy

In this section, we show the latest original theoretical results of our study, namely, the intrinsic fluctuations of the decay process
nd the entropy associated with the same physical phenomenon, which as far as we know there are no previous studies. The
luctuations are calculated through the Fano factor, and we derive the Shannon entropy metric as a stochastic process for the decay

phenomenon.

5.1. Relative fluctuations (RF): Fano factor

Every system with a random nature inevitably has intrinsic fluctuations that can be accounted for using different statistical
ariability metrics. Fluctuations refer to variations or changes in a system or process over time. In this section, we analyze the
luctuations through the Fano Factor, namely, for the binomial and Poisson distribution in the context of the birth–death processes,
hich have significant differences as we have seen in the previous sections 3.2, 4.3 and 4.4.

In section6 4.4, we have shown the prior and conditional probabilities, respectively. So, we can deduce and conclude that radioac-
ive decay behaves and evolves in two stages. (both distributions) according to different features such as: (i) First, since the binomial

distribution can approximate the Poisson distribution, then, they intrinsically have a connection —at least mathematically—, where
the main requirement for the binomial is that the number of trials or items —in this case the radioisotopes— are large enough
(𝑆𝑛 = 𝑁0 → ∞), and the assigned probabilities are very small (𝑝(𝑡) → 0), because 𝑁0𝑝(𝑡) < ∞. This last requirement is equivalent
o having the number of nuclei that decay are much smaller than the number of radioactive nuclei that are waiting — sojourn time
.3.1, which is more relevant than is believed — for the disintegration (i.e. 𝑥 ≪ 𝑁0).

(ii) Second, the time intervals (time period), the parameters (decay constant) and the decay lifetime ratio (half-lives) for each
pecific radiotracer are very sensitive as they evolve. (iii) And third, if we consider the relative fluctuations 𝑓𝑟 or Factor Fano.7 This
actor is widely used in particle counting statistics —photons, electro-photons, with high and low energy— in detection processes;
lso in studies on fluctuations in the noise of electro-optical signals, and neuroscience (see for example: [22,38,39]). In mathematical
tatistics it is known as the Coefficient of Variation8: 𝐶𝑉 = 𝜎∕𝜇. In each stage of disintegration as we argue in (i) and (ii), when
e have a large number of radio-isotopes undecayed, these on average behave deterministically. However, those that decay (at a

onstant rate), which are much less, have a more random behavior.

.1.1. RF for binomial and Poisson distribution as a pure birth process (PBP)
Relative fluctuations can be calculated through the ratio between the standard deviation and the mean of the distribution. That

s, according to the binomial distribution, as the number of elements in a system increases, the mean value 𝑥̄ = 𝐸(𝑋) = 𝜇𝑋 increases
inearly with 𝑛 = 𝑁0, whereas the standard deviation 𝜎 = (𝑉 𝑎𝑟(𝑋))1∕2 increases only as the square root of 𝑁0, i.e.

𝑓𝑟 =

√

𝑉 𝑎𝑟(𝑋)
𝐄(𝑋)

=

√

𝑁0𝑒−𝜆𝑡(1 − 𝑒−𝜆𝑡)
(𝑁0(1 − 𝑒−𝜆𝑡))2

= 1
√

𝑁0

√

𝑒−𝜆𝑡
(1 − 𝑒−𝜆𝑡)

(35)

Making a Taylor series expansion, we obtain
√

𝑉 𝑎𝑟(𝑋)
𝐄(𝑋)

= 1
√

𝑁0

{

1
√

𝜆𝑡
−

√

𝜆𝑡
4

+ 1
196

𝜆3∕2𝑡3∕2 + 1
384

𝜆5∕2𝑡5∕2

− 1
10240

𝜆7∕2𝑡7∕2 + 19
368640

𝜆9∕2𝑡9∕2 +⋯ + 𝑂(𝑡)𝑛∕2
}

Finally, by discarding higher order terms in the expansion, we can approximate the relative fluctuations, consequently

𝑓𝑟 =

√

𝑉 𝑎𝑟(𝑋)
𝐄(𝑋)

≈ 1
√

𝑁0𝜆𝑡
(36)

we show that the relative fluctuations are very small if 𝑁0 is very large (deterministic tendency). However, if 𝑁0 is small, the time
and the parameter 𝜆 influence much more the random behavior in the decay; as usually happens in these cases. From Eq. (36)

6 In this section we use the 𝜆 parameter interchangeably with the stochastic process, however, they can be used with other parameters such as 𝜇 and 𝛾.
Mathematically, it does not affect the result.

7 Fano factor [38] is a measure of variability of a counting process defined as

𝐹 (𝑠) =
𝑉 𝑎𝑟[𝑁(𝑠)]
𝐸[𝑁(𝑠)]

, 𝑠 > 0

here 𝑁(𝑠) is a equilibrium counting (stochastic) process that describes the number of items —radioisotopes in this case— in an interval (0, 𝑠], 𝑠 > 0, where
ime zero is randomly placed with respect to the sequence of items (radioisotopes)

8 The coefficient of variation (CV) or Fractional standard deviation is a statistical measure of the spread of data points in a data series around the mean. The
oefficient of variation represents the relationship (ratio) between the standard deviation and the mean, and is a useful statistic for comparing the degree of
ariation in one data series with another, even if the means are drastically different from each other.

√

⟨𝑋2
⟩−⟨𝑋⟩

2
= 1

√

√

1 + ⟨𝑋⟩, known as the relative root-mean-square (rms)
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(without the approximation) we can see that 𝑉 𝑎𝑟(𝑋) = 𝜇𝑋𝑒−𝜆𝑡, i.e., is proportional to 𝜇𝑋 , the expected value or mean. And the
relative fluctuation: 𝑓𝑟 =

(

1∕
√

𝜇𝑋

)

𝑒−𝜆𝑡∕2, i.e., is proportional to the inverse of root mean square (see footnote 7 and 8).
For the Poisson (process) distribution, (we do not need an approximation) we directly obtain

𝑓𝑟 =

√

𝑉 𝑎𝑟(𝑋)
𝐄(𝑋)

=

√

𝑁0𝜆𝑡
(𝑁0𝜆𝑡)2

= 1
√

𝑁0𝜆𝑡
(37)

Both approaches with the Poisson and Binomial distributions are mathematically complementary, even in a stochastic pure birth
process context 4.4. Nevertheless, as we will see below 5.1.2 in the context of a stochastic pure death process, there are marked
differences. From the Eqs. (36) and (37) — see Fig. 3 with the plots of Eqs. (35) and (37) without the approximation (36), which is
practically equal to (37)— we show that the relative fluctuation between both distributions (stochastic processes) are practically the
same. Which means that on average the variability of radioactive decay between one distribution and another evolve statistically
in a similar way. However, these distributions have particular mathematical characteristics. As they are continuous functions over
time (stochastic pure birth process), their graphic performance shows significant differences in their evolution (maximum values, for
example) relative to the calculated probabilities. Remember that the binomial distribution is proportional to a factorial coefficient
—total number of samples and trials— and the Poisson distribution is proportional to the ratio between the mean and factorial of the
number of trials. For this reason it is lower than the binomial, with the same values. All this depends on the conditions mentioned
above —(i), (ii) and (i)— where the stochastic process, i.e., the random phenomenon is updated in each time interval as we show
in Section 4.4.1, and where the sojourn time plays a very important role 4.3.1. That is, if a radioisotope randomly decays, its decay
rate converges with the rate of the exponential type that has the lowest decay rate. Because the longer an isotope takes to decay,
the more likely it is to be a type of radioactive element with the slowest decay rate.

Being a theoretical study, we assume ideal conditions, but we are aided by at least one real physical parameter. On the other
hand, the Fano factor that measures the fluctuations is an ideal case, since if we consider a more realistic situation we should include
(adjust) noise variations due to excitation events, which alter the coherence broadening in the signal. (see for example [40]). Whether
the experimental detection process is considered will depend on the detector used and its efficiency: Such as the physical and
technological features —parameters, materials, radioactive substances—, time periods, photo-detection techniques and/or detection
of alpha, beta, gamma particles (or radiation), so on. Which is outside the scope of this work —for a more detailed study, those
interested can consult the references: [10,13,19,20,22,23]—.

5.1.2. RF for binomial (and Poisson) distribution as a pure death process (PDP)
Here show the fluctuations for (PDP)

𝑓𝑟 =

√

𝑉 𝑎𝑟(𝑋)
𝐄(𝑋)

=

√

𝑁0𝑒−𝜆𝑡(1 − 𝑒−𝜆𝑡)
(𝑁0𝑒−𝜆𝑡)2

= 1
√

𝑁0

√

𝑒𝜆𝑡 − 1 = 𝑒𝜆𝑡∕2
√

𝑁0

√

1 − 𝑒−𝜆𝑡 (38)

imilarly to Eqs. (35) and (36) we making a Taylor series expansion:
√

𝑉 𝑎𝑟(𝑋)
𝐄(𝑋)

= 1
√

𝑁0

{

√

𝜆𝑡 + 1
4
𝜆3∕2𝑡3∕2 + 5

96
𝜆5∕2𝑡5∕2 + 1

128
𝜆7∕2𝑡7∕2

− 79
92160

𝜆9∕2𝑡9∕2 + 3
40960

𝜆11∕2𝑡11∕2 + 71
12386304

𝜆13∕2𝑡13∕2 +⋯ + 𝑂(𝑡)𝑛∕2
}

e can discard higher-order terms, considering that the parameters and the quotients tend quickly to zero.

𝑓𝑟 =

√

𝑉 𝑎𝑟(𝑋)
𝐄(𝑋)

≈

√

𝜆𝑡
√

𝑁0
(39)

We can observe that now the fluctuations (Fano factor) for the binomial process —as a pure death process— are proportional to
the direct square root of the product of the time by the parameter, unlike the fluctuations for the binomial process —a pure birth
process— in Eq. (36), where this process is proportional to the inverse of the square root. Regarding the Poisson process, in both
cases, the fluctuations vary in the same way (see Eq. (37), and figure 3).

5.2. Stochastic entropy

Here we show entropy metrics in the mathematical context of Shannon’s information theory. We compute the entropy function
for the standard Poisson and binomial stochastic processes. Seldom used in a physical context. And as far as we know, it has never
been used for these distributions —binomial and Poisson-like— in radioactive decay applications, as in the case of our study. We
perform the analysis purely theoretically, leaving for future studies a deeper research into applications in other physical contexts.
Shannon’s entropy is a mathematical measure of the amount of uncertainty or randomness in a given set of data or information. It
was introduced by Claude Shannon in his seminal paper A Mathematical Theory of Communication in 1948 [21]. Shannon’s entropy
16

is often used in the context of information theory to quantify the amount of information contained in a message, signal or data
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Fig. 3. Binomial (Huestis vs. Foster et al.) versus Poisson Fluctuations (Fano factor): In this figure we can visualize the plots (A to D) of the Eqs. (35), (37), and (38)
of the Fano factor corresponding to the fluctuations of the Binomial (Huestis vs. Foster et al.) and Poisson process, for the parameter: 𝜇 = 𝜆 = 6.313×10−3 min−1.
However, these processes are matched by approximating through of parameters —i.e. the decay constants, and analytically doing a Taylor series expansion —
in a limiting case obtained in Eq. (36). In all cases (A to D), the binomial process (Foster et al. case (PBP)) decays or decreases its fluctuations faster than the
Poisson process, nevertheless, both processes fluctuate similarly in the equation approximation (36). But the binomial process decreases faster. Regarding the
case of the Huestis-type binomial process (PDP), the Fano factor indicates that the fluctuations increase with time.

stream —for more information and description of this theory, see the excellent treatise by Cover and Thomas: [41]—. Shannon’s
entropy is defined as:

𝐇(𝑋) = −
∞
∑

𝑘=1
𝑃𝑋 (𝑘) log𝑃𝑋 (𝑘) = −𝐄

[

log𝑃𝑋 (𝑘)
]

(40)

where 𝐇9 is the entropy of the system, 𝑃𝑋 (𝑥) is the probability of a particular outcome 𝑥, and log (⋅) is the binary logarithm. The
entropy is measured in bits if the base of the logarithm is 2. If the base of the logarithm is the number 𝐞 (natural logarithm, inverse
of the exponential function), entropy is measured in nats. In this case, the entropy value represents the average number of nats
needed to represent or encode each event. The formula can be interpreted as the expected value of the information content of a
message, weighted by its probability of occurrence. It measures the amount of uncertainty or randomness in the system: the higher
the entropy, the more uncertain the system is. It should be noted that entropy is a relative measure and does not have an absolute
scale. The magnitude of entropy depends on the probabilities (or probability density) of the events in the system or data set being
analyzed. Higher entropy values indicate greater uncertainty or randomness, while lower entropy values indicate more order or
predictability. Shannon’s entropy has found many applications in various fields, including cryptography, data compression, signal
processing, statistical mechanics, and now in radioactive decay. It provides a powerful tool for analyzing the properties of complex
systems and understanding the fundamental limits of information processing.

5.2.1. Poisson stochastic entropy
This paper theoretically demonstrates the entropy function in binomial and Poisson stochastic processes context used for

radioactive decay. It should be mentioned that the entropy for these distributions has already been calculated by other authors
(among others) in purely mathematical contexts by M. Cheraghchi [43] with exhaustive generalizations and, on the other hand,
with an approach directed to physical optics by A. Martínez [44]. We think they are among the most outstanding and we follow their
trend. However, our focus is specifically on stochastic processes, where to our knowledge the entropy of the mentioned distributions

9 In the classical statistical mechanics context [42], the Gibbs (and Boltzmann) entropy is traditionally represented by
𝑆 = −𝑘

∑

𝑖=1 𝑝𝑖 ln 𝑝𝑖 (𝑘 = 𝑐𝑡𝑒. = 1). But when the energy remains fixed, and all the states are equally accessible —that is, with probability 𝑝𝑖 = 𝑝 = 1∕𝑤 substituted
in the Gibbs entropy—, the so-called Boltzmann entropy is obtained: 𝑆 = ln𝑤.
17
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i

has not been calculated. Now, using the definition of entropy (40) with the aforementioned stochastic distributions (see (4) for
standard binomial process, and (29) to (30) for standard Poisson process), we proceed to show the respective entropies: (with
⟨𝑠𝑛⟩ = 𝑠)

𝐇(𝑋𝑃𝑜𝑖𝑠𝑠𝑜𝑛) = 𝐇𝑃𝑜𝑖𝑠𝑠 = −
∞
∑

𝑘=0

(

𝑠𝑘

𝑘!
𝑒−𝑠

)

log
(

𝑠𝑘

𝑘!
𝑒−𝑠

)

= −
∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑒−𝑠

[

𝑘 log (𝑠) − log (𝑘!) − 𝑠
]

= −𝑒−𝑠
{ ∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑘 log (𝑠)

}

+ 𝑠𝑒−𝑠
[ ∞
∑

𝑘=0

𝑠𝑘

𝑘!

]

⏟⏞⏟⏞⏟
𝑒𝑠

+𝑒−𝑠
∞
∑

𝑘=0

𝑠𝑘

𝑘!
[

log (𝑘!)
]

=
(

𝑠 − 𝑠 log (𝑠)
)

+
∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑒−𝑠

[

log𝛤 (𝑘 + 1)
]

=
(

𝑠 − 𝑠 log (𝑠)
)

+ 𝑒−𝑠
∞
∑

𝑘=0

𝑠𝑘

𝑘! ∫

∞

0

[

𝑘 − 1 − 𝑒−𝑘𝑥
1 − 𝑒−𝑥

]

𝑒−𝑥

𝑥
𝑑𝑥

𝐇𝑃𝑜𝑖𝑠𝑠 =
(

𝑠 − 𝑠 log (𝑠)
)

+ ∫

1

0

[

1 − 𝑒−𝑠(1−𝑢)
1 − 𝑢

− 𝑠
]

𝑑𝑢
log (𝑢)

(41)

where we use the gamma function (𝛤 (𝑧 + 1) = 𝑧!) to express the factorial term. And the log (⋅) function can be in binary base or the
natural logarithm base, i.e. in base log𝑒 (⋅) = ln (⋅). The integral in formula (41) is proper and converges, nevertheless, note that in
extreme limits (i.e., at 𝑢 = 0 and 𝑢 = 1), it may have convergence problems and behaves as follows [44]: At 𝑢 = 0 it tends to zero,
and at 𝑢 = 1, we obtain the convergence by doing a Taylor series expansion on the exponential function

lim
𝑢→1

[

1 − 𝑒−𝑠(1−𝑢)
1 − 𝑢

− 𝑠
]

1
log (𝑢)

= 𝑠𝑠

2

Expressions in terms of factorials and logarithmic functions are expressed with the help of the Gamma function in its different
orms.

log (𝑘!) = log𝛤 (𝑘 + 1) = ∫

∞

0

[

𝑘 − 1 − 𝑒−𝑘𝑥
1 − 𝑒−𝑥

]

𝑒−𝑥

𝑥
𝑑𝑥

log𝛤 (𝑘 + 1) = ∫

1

0

[

1 − 𝑢𝑘
1 − 𝑢

− 𝑘
]

𝑑𝑢
log (𝑢)

. (42)

The first expression, in (42), is obtained by means of Ref. [45] (formula (9), page 360); where 𝑢 = 𝑒−𝑥, —see Appendix C for more
details—. We do not make any approximation for the factorial expression nor the logarithm function with the factorial, we use
the Gamma function and exact integral representations. Because it has become customary in the physical literature to make use
of Stirling’s formula approximation. Here, we get, similarly to the cited Refs. [43,44], analytical, general, and exact expressions.
Our approach, unlike the previous uses, is as we have already mentioned to obtain the Entropy of binomial and Poisson stochastic
processes. Our analytical route is similar, but not the same as that of the cited authors, in Appendix C, we show these formulas using
our own approach. The reason for obtaining an exact analytic formula is that its numerical evaluation —with the use of computers
and numerical algorithms for the integral— is easier and more accurate than using the Stirling approximation.

Now we represent the formula as a function of time, considering that it is a stochastic process. From this, we finally obtain the
entropy for the Poisson process. Making the following changes 𝑠 → 𝑁0𝜆𝑡 and log (𝑢) → log𝑒 (𝑢) = ln (𝑢), where 𝑢 should be considered
an auxiliary variable.

𝐇𝑃𝑜𝑖𝑠𝑠(𝑋(𝑡)) =
(

𝑁0𝜆𝑡 − (𝑁0𝜆𝑡) ln (𝑁0𝜆𝑡)
)

+ ∫

1

0

[

1 − 𝑒−𝑁0𝜆𝑡(1−𝑢)

1 − 𝑢
−𝑁0𝜆𝑡

]

𝑑𝑢
ln (𝑢)

(43)

Remark: We describe of formulas (41) and (43) to give us a better insight into their application. Formula (41) is similar to that
obtained by the cited authors [43,44]. But, we developed different procedures to derive it; however, as far as we know, the formula
(43) is unpublished. The application of these formulas depends on the specific stochastic context of interest. Formula (41) emphasizes
using statistical and/or physical parameters, not considering how it evolves over time. In formula (43), time is explicitly included.
Remember that we are dealing with a stochastic process of a discrete random variable (d.r.v.) in continuous time (sojourn time).
Nevertheless, caution must be taken when using this formula, where we must take the time (individual, interval, or average) for
each stochastic trajectory,10 setting the total number 𝑛 = 𝑁0. In such a way that a family of trajectories is formed (ensemble). In order
to calculate the integral, not only because it is numerical, but because each trajectory must be fixed in a specific time interval. One
way to validate the entropy calculated for this type of stochastic process —Poisson and the binomial— is to look for a bound that

10 A stochastic trajectory refers to the path or sequence of events followed by a system or process that is subject to stochastic (random or probabilistic)
18

nfluences. In other words, it describes the evolution or behavior of a system over time when there is inherent uncertainty or randomness involved.
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compares its plots, approximately. Likewise, one approach is to carry out a comparison using Gaussian Maximum Entropy GME11

(see: [41], chapters 8, and 12. Also arXiv-paper [46]) —which is derived from the differential entropy of the Normal distribution, of
a continuous random variable (c.r.v.) at continuous time— which works as an upper bound for the entropy (stochastic) of Poisson.
We plot the numerical simulation of (41) in Fig. 4(a). And the binary type term

(

𝑠− 𝑠 log (𝑠)
)

in Fig. 4(b). The GME comparison in
Fig. 4(c).

5.2.2. Binomial stochastic entropy
Similarly, for binomial stochastic process, we can get the entropy function, i.e., following someone steps of Ref. [43], we calculate

his entropy, the details we send to Appendix D.

𝐇(𝑋𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙) = 𝐇𝐵𝑖𝑛 = −
∞
∑

𝑘=0

(

𝑛
𝑘

)

𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘 log

[(

𝑛
𝑘

)

𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

]

(44)

= −
∞
∑

𝑘=0

𝛤 (𝑛 + 1)𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)
log

[𝛤 (𝑛 + 1)𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)

]

= −
∞
∑

𝑘=0

𝛤 (𝑛 + 1)𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)
×

×
[

log𝛤 (𝑛 + 1) − log𝛤 (𝑘 + 1) − log𝛤 (𝑛 − 𝑘 + 1) − 𝑘 log 𝑝 + (𝑛 − 𝑘) log
[

1 − 𝑝
]

]

= 𝑛ℎ(𝑝) − log𝛤 (𝑛 + 1) +
∞
∑

𝑘=0
log𝛤 (𝑘 + 1)

(

𝑛
𝑘

)

𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘 +

∞
∑

𝑘=0
log𝛤 (𝑛 − 𝑘 + 1)

(

𝑛
𝑘

)

𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

𝐇𝐵𝑖𝑛 = 𝑛ℎ(𝑝) − log𝛤 (𝑛 + 1) + 𝐄
[

log𝛤 (𝑘 + 1)
]

+ 𝐄
[

log𝛤 (𝑛 − 𝑘 + 1)
]

where

ℎ(𝑝) = −𝑝 log 𝑝 − (1 − 𝑝) log (1 − 𝑝) (45)

This is the binary entropy (we can see more details in Appendix D). And (𝑃𝑛(𝑘) = 𝑓𝐵𝑖𝑛(𝑘) = 𝐵(𝑘; 𝑛, 𝑝) =
(𝑛
𝑘

)

𝑝𝑘(1−𝑝)𝑛−𝑘 is the binomial
distribution) the expected values are

𝐄
[

log𝛤 (𝑘 + 1)
]

= 𝐸𝐵𝑖𝑛(𝑛, 𝑝) =
∞
∑

𝑘=0
log𝛤 (𝑘 + 1)𝑓𝐵𝑖𝑛(𝑘) (46)

𝐄
[

log𝛤 (𝑛 − 𝑘 + 1)
]

= 𝐸𝐵𝑖𝑛(𝑛, 1 − 𝑝) =
∞
∑

𝑘=0
log𝛤 (𝑛 − 𝑘 + 1)𝑓𝐵𝑖𝑛(𝑘) (47)

After several transformations and using the previous results ((44) to (47)), we can obtain the entropy function for the binomial
distribution, i.e.,

𝐇𝐵𝑖𝑛(𝑋) = 𝑛ℎ(𝑝) − log𝛤 (𝑛 + 1) + 𝐸𝐵𝑖𝑛(𝑛, 𝑝) + 𝐸𝐵𝑖𝑛(𝑛, 1 − 𝑝)

= 𝑛ℎ(𝑝) − ∫

1

0

[

(1 − 𝑢𝑝)𝑛

log (1 − 𝑢)

]

𝑑𝑢 − ∫

1

0

[

(

1 − 𝑢(1 − 𝑝)
)𝑛

log (1 − 𝑢)

]

𝑑𝑢 + ∫

1

0

1 + (1 − 𝑢)𝑛

𝑢 log (1 − 𝑢)
𝑑𝑢 (48)

𝐇𝐵𝑖𝑛(𝑋) = 𝑛ℎ(𝑝) +𝐇1 +𝐇2 −𝐇3

These last 𝐇𝑗 functions are developed and well expressed in Appendix D. Which are more convenient to understand the scope
and limitations of binomial entropy. Thus, we obtain the stochastic entropy for the binomial distribution, using the functions
𝑝(𝑡) = (1 − 𝑒−𝜆𝑡) and 1 − 𝑝(𝑡) = 𝑒−𝜆𝑡 (Foster et al. type, similarly can be done for the Huestis type distribution; see Section 3.2),
that is,

𝐇𝐵𝑖𝑛(𝑋(𝑡)) = 𝑛ℎ(𝑝(𝑡)) − ∫

1

0

[

1 − 𝑢(1 − 𝑒−𝜆𝑡)
]𝑛

log (1 − 𝑢)
𝑑𝑢 − ∫

1

0

[

1 − 𝑢𝑒−𝜆𝑡
]𝑛

log (1 − 𝑢)
𝑑𝑢 + ∫

1

0

1 + (1 − 𝑢)𝑛

𝑢 log (1 − 𝑢)
𝑑𝑢 (49)

As in the case of the Poisson process, we can also make the change in the base of the logarithm, i.e., log (𝑢) → log𝑒 (𝑢) = ln (𝑢) (and
remember that 𝑛 = 𝑁0). Finally, we get the binomial stochastic process entropy function

𝐇𝐵𝑖𝑛(𝑋(𝑡)) = 𝑛ℎ(𝑝(𝑡)) − ∫

1

0

[

1 − 𝑢(1 − 𝑒−𝜆𝑡)
]𝑛

ln (1 − 𝑢)
𝑑𝑢 − ∫

1

0

[

1 − 𝑢𝑒−𝜆𝑡
]𝑛

ln (1 − 𝑢)
𝑑𝑢 + ∫

1

0

1 + (1 − 𝑢)𝑛

𝑢 ln (1 − 𝑢)
𝑑𝑢 (50)

Remark: The application of formulas (48) and (50) generally follows the same guidelines as those for Poisson entropy in the previous
Section 5.2.1. However, we must emphatically point out that the expressions for binomial entropy lead to an apparent ambiguity

11 This is derived from stochastic processes with a c.r.v., specifically, for the so-called gaussian power spectral density PSD. Kolmogorov showed that for a
stationary Gaussian process with PSD 𝜓𝑋 (𝑠), the differential entropy rate is given by:

𝐇̄(𝑋) = 1 log (2𝜋𝑒) + 1 ∫ 2𝜋 log (𝜓 (𝑠))𝑑𝑠. From what can be derived 𝐻 (𝑋) ≤ 1 log
[

2𝜋𝑒
(

𝐕𝐚𝐫(𝐗) + 1
)]

.
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Fig. 4. Poisson and binomial entropy: In (a), we show the simulation data by numerical integration of (41), where 𝑠 = ⟨𝑠𝑛⟩ is the average value —for
𝑠 = 1, 2,… , 10— and 𝑢 an auxiliary variable in the integral. In (b), only the binary type terms independently of the terms under the integral are plotted, that
is, from (41) 𝑠 − 𝑠 log (𝑠), from (48) −𝑝 log (𝑝) − (1 − 𝑝) log (1 − 𝑝) in natural basis. And from (45) ℎ(𝑝) = −𝑝 log2 (𝑝) − (1 − 𝑝) log2 (1 − 𝑝) in base 2 —the binary base
originally used in Shannon information theory—, all as a function of their parameters. (c) Here we show the same plots as in (b) —except binary entropy—
superimposing the differential entropy bounded curve through the Gaussian Maximum Entropy (GME), (which are bounds based on the normal distribution, see

5.2.1); that is, 𝐻𝑃𝑜𝑖(𝑋) ≤ 1
2
log

[

2𝜋𝑒
(

𝑠 + 1
12

)

]

, and 𝐻𝑏𝑖𝑛(𝑋) ≤ 1
2
log

[

2𝜋𝑒
(

𝑠(1 − 𝑠) + 1
12

)

]

. Where we use: 𝐻𝐷𝑖𝑠𝑡(𝑋) ≤ 1
2
log

[

2𝜋𝑒
(

𝐕𝐚𝐫(𝐗) + 1
12

)]

. For a more complete

description about GME, see the references: [41], chapters 8, and 12. And [46]. Finally, in (d), we show the functions of the formula integral (48) and it also
applies to (49) and (50). Numerical evaluation is not possible because they are divergent integrals (see text for full explanation, 5.2.2).

in the explicit (numerical) calculation of integrals —which we denote as 𝐇1, 𝐇2, and 𝐇3— since they are divergent.12 Thus, our
proposal to understand convergence (if it exists) more quickly is to use the 𝐇𝑗 expressions, of which we plot the functions within the
integral in Fig. 4 (d). This allows us to visualize the so-called areas under the curve. From this, we can deduce that the most pathetic
case is area (zone) 3 (for 𝐇3 < 0) since its area is negative infinite and overwhelmingly cancels out the other two areas (zones) 1
and 2, which are much smaller.13 Nevertheless, for numerical computation, we can resort to a trick by setting a very small fixed
lower limit close to zero —asymptotically close to 0—. We can conduct numerical experiments that allow us to observe the overall
behavior of the three involved areas and how they cancel out. From this, we can notice that zones 1 and 2 are very small, while
zone three (negative) acquires increasingly large values. We could make an integration interval [𝛿, 1] for a 𝛿 sufficiently small, e.g.

lim
𝛿→0

{

−∫

1

𝛿

[

1 − 𝑢(1 − 𝑒−𝜆𝑡)
]𝑛

ln (1 − 𝑢)
𝑑𝑢 − ∫

1

𝛿

[

1 − 𝑢𝑒−𝜆𝑡
]𝑛

ln (1 − 𝑢)
𝑑𝑢 + ∫

1

𝛿

1 + (1 − 𝑢)𝑛

𝑢 ln (1 − 𝑢)
𝑑𝑢

}

However, the third integral continues to overwhelmingly outperform the first two integrals. Fortunately, for large values of 𝑛 = 𝑁0,
the binomial entropy (48) with the term 𝑛ℎ(𝑝) dominates over the other three. Therefore, the dominant binomial entropy for large
𝑁0 is the binary-like part. For radioactive substances (radioisotopes), we speak of about 𝑁0 on the order of 1023.

6. Conclusion

In this paper, we explore nuclear radioactive decay from various angles and perspectives, briefly touching upon the deterministic
aspect and delving significantly into the stochastic aspect. We provide a concise analysis of decay within a deterministic framework

12 It is worth mentioning that in the paper of M. Cheraghchi [43], the expressions for binomial entropy, formulas (17) (similar to ours (48)) and (19) are
quite general. However, the numerical calculation of it is quite cumbersome. Since both formulas are infinite, but especially in formula (19), the second term
is expressed as an infinite sum of improper integrals. We wouldn’t know if that would have a rapid convergence.

13 Another option that might be tentative is to compute the integrals as a principal value integral (Cauchy Integrals). Unfortunately, this only applies to areas
under the curve that are symmetric or antisymmetric about the 𝑦-axis. In order to add (finite value) or cancel the infinite asymptotic zones.
20
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in Section 2, where it is modeled as a phenomenon featuring exponential decay. However, our primary focus lies on the statistical
and probabilistic aspects of decay. We commence with the concept of the so-called Radioactive Dice (a toy model; see [4–6,47]),
where statistical techniques such as the Moment Generating Function (MGF) method are employed to generalize the elementary
system [8,9]. These techniques serve as a foundation to advance our study using stochastic models.

In particular, we analyze the Binomial and Poisson processes within a stochastic context (Section 3). Given that radioactive
ecay is inherently statistical (random) in nature, we cannot predict when any of the radioisotopes will decay. To deduce the
tochastic Poisson process (Section 4.3), we employ the Kolmogorov stochastic differential equations approach (in continuous time),
hich is well-known in the fields of statistical and quantum physics as master equations. This process is crucial for understanding

ystems where events of a random nature are studied, such as the counting of atomic and subatomic particles (in nuclear and atomic
hysics) or photons (quantum optics). By adopting this approach, we gain a better understanding of the nature of radioactive decay,
onsidering it as a stochastic phenomenon rather than solely focusing on its counting statistics.

The literature on statistical physics, quantum optics, nuclear medicine, and related fields abounds in studies on the statistical
ounting of detectable particles —be they bosons and/or fermions—(see references cited in the text). However, as previously

mentioned, these studies primarily focus on pure statistical counting. Specifically, they examine the statistics provided by the
binomial and Poisson distributions and make comparisons between them. In our study, we take a step further by analyzing these
distributions not only from an elementary statistical-probabilistic standpoint but also by applying the techniques of stochastic
processes.

As previously mentioned, stochastic modeling of systems and phenomena of a random nature, such as nuclear radioactive decay,
is endowed by powerful mathematical tools, such as Markov processes and Kolmogorov differential equations (master equations).
These tools provide us with deeper insights into random events through the tripartite application of stochastic processes: namely,
Binomial, Poisson, and exponential. These processes involve distributions of a discrete random variable (d.r.v.) (with the exponential
being a continuous random variable) in continuous time. This enables us to comprehend how these variables evolve by conducting
a comparative analysis of their behavior through the stochastic evolution of the Binomial and Poisson processes. It’s important to
note that they also undergo significant changes in their radioactive decay due to real physical parameters, such as decay constants
and half-lives.

One of the most notable outcomes of our study was the calculation of the Poisson process modeled through the so-called
pure death process, as modeled with the master equations (21), with the solution provided by (22) fully deduced in Appendix B.
Introducing the sojourn time (waiting time) (Section 4.3.1 and Fig. 1), we obtain the original solution (24), which differs from those
studied in the literature. Another important result is the distinction between this model and the one most commonly used in the
literature, namely the Poisson process conceived as a pure birth process (Section 4.4). In Fig. 2, we present a comparison of the
binomial processes proposed by Forster and Huestis (Section 3.2), as well as the Poisson processes obtained in this work.

A more fundamental approach that we further delve into is the analysis of relative fluctuations using the Fano factor (Section 5.1
and Fig. 3), as well as the variability of uncertainty through the entropy, within the context of Shannon’s entropy, of Poisson
and binomial distributions. We derived Eq. (41), as mentioned earlier (Section 5.2), which was previously calculated by other
authors [43,44]. Nonetheless, we have calculated it based on fundamental principles using our methodologies, and we have
presented the Stochastic Entropy as a function of time, namely Eq. (43). Similarly, we obtained the binomial entropy through
first principles, resulting in Eqs. (48) and (50). Our approach is rooted in a theoretical framework, providing deeper insights than
solely examining statistical characteristics. Entropy, a fundamental mathematical concept in thermodynamics, statistical physics,
and information theory, offers deeper knowledge about random systems beyond statistical data and tests alone. Furthermore, we
can explore additional metrics such as the rate and production of entropy, relative entropy, and more (which we leave for future work).

Both the detection and the associated statistics of radioactive decay entail a more complex feature when attempting to understand
their evolution throughout the random physical process. As mentioned earlier, this process is divided into a deterministic collective
behavior when most of the radioisotopes are in a waiting time (as determined by the sojourn time), without decaying (𝑁0 ≫ 𝑛),
nd another phase when the radioisotopes decay and disintegrate at a constant yet random rate. It remains unpredictable which
f all the particles will decay at any given instant of time. Therefore, the statistics and their distribution for this physical process
f radioactive decay are updated in each interval of time, dividing the process into two stages: a larger, more or less deterministic
ortion of the radioactive substance remains without decaying during the waiting or sojourn time, while the other, smaller and
ore random portion undergoes progressive decay, as demonstrated in this paper. Furthermore, it should be noted that a better
nderstanding of the radioactive decay phenomenon can be achieved through stochastic processes and statistical analysis.
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ppendix A

In this appendix we carry out the demonstrations of Eqs. (27) and (28) of Section 4.4. We start with the case of two independent
oisson random variables, 𝑋𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋𝑗 , 𝜆𝑗 ) = 𝑃𝑋𝑗 (𝑥𝑗 ), (𝑗 = 1, 2) with different parameters. Then we proceed to generalize for
𝑛 r. v. of Poisson, i.e. 𝑋𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑋𝑗 , 𝜆𝑗 ) = 𝑃𝑋𝑗 (𝑥𝑗 ), (𝑗 = 1, 2,… , 𝑛). All this using the discrete convolution formula for 2 and 𝑛
probability distribution functions.

𝑃𝑆2 (𝑠2) = 𝑃𝑋1+𝑋2
(𝑠2) = 𝑃𝑋1

(𝑥1) ∗ 𝑃𝑋2
(𝑥2)

=
𝑠2
∑

𝑥1 ,𝑥2

𝑒−𝜆1𝜆𝑥1
(𝑥1)!

𝑒−𝜆2𝜆𝑥2
(𝑥2)!

=
𝑠2
∑

𝑥1=0

𝑒−𝜆1𝑒−𝜆2
(𝑥1)!

𝜆𝑥1𝜆𝑠2−𝑥1
(𝑠2 − 𝑥1)!

=
𝑠2
∑

𝑥1=0
𝑒−(𝜆1+𝜆2) [𝜆𝑥1𝜆𝑠2−𝑥1 ]

(𝑥1)!(𝑠2 − 𝑥1)!

(

(𝑠2)!
(𝑠2)!

)

⏟⏞⏟⏞⏟
1

= 𝑒−(𝜆1+𝜆2)

(𝑠2)!

𝑠2
∑

𝑥1=0

(𝑠2)!
(𝑥1)!(𝑠2 − 𝑥1)!
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

binomial coefficient

[

𝜆𝑥1𝜆𝑠2−𝑥1
]

= 𝑒−(𝜆1+𝜆2)

(𝑠2)!

𝑠2
∑

𝑥1=0

(

𝑠2
𝑥1

)

𝜆𝑥1𝜆𝑠2−𝑥1

𝑃𝑆2 (𝑠2) = 𝑒−(𝜆1+𝜆2)

(𝑠2)!

(

𝜆1 + 𝜆2

)𝑠2
(51)

ow we proceed to show how Eq. (28) is obtained, generating for 𝑛 independent Poisson r. v.

𝑃𝑆𝑛 (𝑠𝑛) = 𝑃𝑋1+𝑋2+⋯+𝑋𝑛 (𝑠𝑛) = 𝑃𝑋1
(𝑥1) ∗ 𝑃𝑋2

(𝑥2) ∗ ⋯ ∗ 𝑃𝑋𝑛 (𝑥𝑛)

=
𝑠𝑛
∑

𝑥1 ,…,𝑥𝑛
𝑠𝑛=𝑥1+𝑥2⋯+𝑥𝑛

𝑃𝑋1
(𝑥1)𝑃𝑋2

(𝑥2)⋯𝑃𝑋𝑛 (𝑥𝑛)

=
𝑠𝑛
∑

𝑥1 ,…,𝑥𝑛
𝑠𝑛=𝑥1+𝑥2⋯+𝑥𝑛

𝜆𝑥11 𝑒
−𝜆1

(𝑥1!)
𝜆𝑥22 𝑒

−𝜆2

(𝑥2!)
⋯
𝜆𝑥𝑛𝑛 𝑒−𝜆𝑛
(𝑥𝑛!)

=
𝑠𝑛
∑

𝑥1 ,…,𝑥𝑛
𝑠𝑛=𝑥1+𝑥2⋯+𝑥𝑛

𝑒−𝜆1𝑒−𝜆2 ⋯ 𝑒−𝜆𝑛−1𝑒−𝜆𝑛
𝑥1!𝑥2!⋯ 𝑥𝑛−1!𝑥𝑛!

[

𝜆𝑥11 𝜆
𝑥2
2 ⋯ 𝜆𝑥𝑛−1𝑛−1 𝜆

𝑥𝑛
𝑛

]

= 𝑒−(𝜆1+𝜆2+𝜆3+⋯+𝜆𝑛)
𝑠𝑛
∑

𝑥1 ,…,𝑥𝑛
𝑠𝑛=𝑥1+𝑥2⋯+𝑥𝑛

{𝜆𝑥11 𝜆
𝑥2
2 𝜆

𝑥3
3 ⋯ 𝜆𝑥𝑛𝑛

𝑥1!𝑥2!𝑥3!⋯ 𝑥𝑛!

}(

(𝑠𝑛)!
(𝑠𝑛)!

)

⏟⏞⏟⏞⏟
1

𝑃𝑆𝑛 (𝑠𝑛) = 𝑒−(𝜆1+𝜆2+𝜆3+⋯+𝜆𝑛)

𝑠𝑛!

𝑠𝑛
∑

𝑥1 ,…,𝑥𝑛
𝑠𝑛=𝑥1+𝑥2⋯+𝑥𝑛

𝑠𝑛!
𝑥1!𝑥2!𝑥3!⋯ 𝑥𝑛!
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

multinomial coefficient

(

𝜆𝑥11 𝜆
𝑥2
2 𝜆

𝑥3
3 ⋯ 𝜆𝑥𝑛𝑛

)

= 𝑒−(𝜆1+𝜆2+𝜆3+⋯+𝜆𝑛)

𝑠𝑛!

𝑠𝑛
∑

𝑥1 ,…,𝑥𝑛
𝑠𝑛=𝑥1+𝑥2⋯+𝑥𝑛

(

𝑠𝑛
𝑥1, 𝑥2,… , 𝑥𝑛

)

(

𝜆𝑥11 𝜆
𝑥2
2 𝜆

𝑥3
3 ⋯ 𝜆𝑥𝑛𝑛

)

= 𝑒−(𝜆1+𝜆2+𝜆3+⋯+𝜆𝑛)

𝑠𝑛!

(

𝜆1 + 𝜆2 + 𝜆3 +⋯ + 𝜆𝑛

)𝑠𝑛

𝑃𝑆𝑛 (𝑠𝑛) =
exp [−

∑𝑛
𝑗=1 𝜆𝑗 ]

𝑠𝑛!

(

𝜆1 + 𝜆2 + 𝜆3 +⋯ + 𝜆𝑛

)𝑠𝑛
(52)

his shows Eq. (28), which, already we said above, is the probability mass function (pmf) for 𝑛 random variables distributed by Poisson
istribution, with parameters 𝜆𝑗 = ⟨𝑥𝑗⟩ the mean (expected value). Notice that 𝑠𝑛! represents the product of all random variables 𝑥𝑗 !,

hat is, 𝑠𝑛! = 𝑥1!𝑥2!⋯ 𝑥𝑛!.

ppendix B

Here we carry out the solution of Eqs. (22) —it would be similar for (24)—. Solving the first equation of (21), we obtain
−𝜇𝑡
22

𝑃𝑁0
(𝑡) = 𝑒
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Then iteratively solving the other two equations of (21), for 𝑛 = 1, 2,… , 𝑁0 − 1. Using the integrating factor technique, we get (with
integrating factor: ℎ(𝑡) = 𝜇𝑡)

𝑃𝑛(𝑡) = 𝑒−ℎ(𝑡)
{

∫

𝑡

0
𝜇𝑒ℎ(𝑠)𝑃𝑛+1(𝑠)𝑑𝑠 + 𝑐

}

; (𝑐 = 0)

𝑃𝑛(𝑡) = 𝑒−𝜇𝑡 ∫

𝑡

0
𝜇𝑒𝜇𝑠𝑃𝑛+1(𝑠)𝑑𝑠

𝑃𝑛(𝑡) = 𝑒−𝜇𝑡𝑅𝑛(𝑡)

where

𝑅𝑛(𝑡) = ∫

𝑡

0
𝜇𝑒𝜇𝑠𝑃𝑛+1(𝑠)𝑑𝑠, ⟹ 𝑅𝑛(𝑡) = 𝑒𝜇𝑡𝑃𝑛(𝑡)

⟹
𝑑𝑅𝑛(𝑡)
𝑑𝑡

= 𝑅′
𝑛(𝑡) = 𝜇𝑅𝑛−1(𝑡) (53)

Solving a few terms of formula (41) with the help of (40), we have

𝑅′
𝑁0−1

(𝑡) = 𝜇𝑅𝑁0−2(𝑡) ⟹ 𝑅𝑁0−1(𝑡) = 𝜇𝑡 =
𝜇𝑡
1!

𝑅′
𝑁0−2

(𝑡) = 𝜇𝑅𝑁0−3(𝑡) ⟹ 𝑅𝑁0−2(𝑡) =
(𝜇𝑡)2

1 ⋅ 2
=

(𝜇𝑡)2

2!

𝑅′
𝑁0−3

(𝑡) = 𝜇𝑅𝑁0−4(𝑡) ⟹ 𝑅𝑁0−3(𝑡) =
(𝜇𝑡)3

1 ⋅ 2 ⋅ 3
=

(𝜇𝑡)3

3!
⋮

𝑅′
𝑁0−𝑘

(𝑡) = 𝜇𝑅𝑁0−𝑘+1(𝑡) ⟹ 𝑅𝑁0−𝑘(𝑡) =
(𝜇𝑡)𝑘

1 ⋅ 2 ⋅ 3⋯ (𝑘 − 1) ⋅ 𝑘
=

(𝜇𝑡)𝑘

𝑘!
⋮

𝑅′
𝑁0−𝑛

(𝑡) = 𝜇𝑅𝑁0−𝑛+1(𝑡) ⟹ 𝑅𝑁0−𝑛(𝑡) =
(𝜇𝑡)𝑁0−𝑛

1 ⋅ 2⋯ (𝑁0 − 𝑛 − 1) ⋅ (𝑁0 − 𝑛)
=

(𝜇𝑡)𝑁0−𝑛

(𝑁0 − 𝑛)!

hen we can get

𝑃𝑛(𝑡) =
(𝜇𝑡)𝑁0−𝑛

(𝑁0 − 𝑛)!
𝑒−𝜇𝑡, 𝑛 = 1, 2,… , 𝑘,… , 𝑁0 (54)

n the other hand, it must be fulfilled (Kolmogorov’s axiom), for each 𝑡 we have
𝑁0
∑

𝑛=0
𝑃𝑛(𝑡) = 1, ⟹ 𝑃0(𝑡) +

𝑁0
∑

𝑛=1
𝑃𝑛(𝑡) = 1

e get

𝑃0(𝑡) = 1 −
𝑁0
∑

𝑗=1

(𝜇𝑡)𝑁0−𝑗

(𝑁0 − 𝑗)!
𝑒−𝜇𝑡 = 1 −

𝑁0−1
∑

𝑛=0

(𝜇𝑡)𝑛

𝑛!
𝑒−𝜇𝑡 (55)

here we made the change: 𝑛 = 𝑁0 − 𝑗 ⇒ 𝑗 = 𝑁0 − 𝑛 = 1 in the last line, with 𝑛 running from 𝑛 = 0, 1, 2,… , 𝑁0 − 1. With this, we
rove the solutions for Eqs. (22) and (24).

ppendix C

Poisson stochastic entropy function
In this section, we develop more details of the explicit calculation of the stochastic entropy functions of Poisson and Binomial.

𝐇(𝑋𝑃𝑜𝑖𝑠𝑠𝑜𝑛) = 𝐇𝑃𝑜𝑖𝑠𝑠 = −
∞
∑

𝑘=0

(

𝑠𝑘

𝑘!
𝑒−𝑠

)

log
(

𝑠𝑘

𝑘!
𝑒−𝑠

)

= −
∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑒−𝑠

[

𝑘 log (𝑠) − log (𝑘!) − 𝑠
]

= −𝑒−𝑠
{ ∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑘 log (𝑠)

}

+ 𝑠𝑒−𝑠
[ ∞
∑

𝑘=0

𝑠𝑘

𝑘!

]

⏟⏞⏟⏞⏟
𝑒𝑠

+𝑒−𝑠
∞
∑

𝑘=0

𝑠𝑘

𝑘!
[

log (𝑘!)
]

= −𝑒−𝑠 log (𝑠)
{ ∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑘
}

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
see note:⋆

+𝑠𝑒−𝑠𝑒𝑠 + 𝑒−𝑠
∞
∑

𝑘=0

𝑠𝑘

𝑘!
[

log (𝑘!)
]

= −𝑒−𝑠 log (𝑠)
[

𝑒𝑠 + 𝑠𝑒𝑠 − 𝑒𝑠
]

+ 𝑠 + 𝑒−𝑠
∞
∑ 𝑠𝑘 [log (𝑘!)

]

23

𝑘=0 𝑘!
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𝐇𝑃𝑜𝑖𝑠𝑠 =
(

𝑠 − 𝑠 log (𝑠)
)

+ 𝑒−𝑠
∞
∑

𝑘=0

𝑠𝑘

𝑘!

[

log𝛤 (𝑘 + 1)
]

(56)

From this, we can obtain Eqs. (41) and (43).
Math note: (⋆) We can split this series into two parts, as indicated in the following development (Using formula 1.212, page

26, from Ref. [45]):

𝑒𝑠(1 + 𝑠) =
∞
∑

𝑘=0

𝑠𝑘(𝑘 + 1)
𝑘!

=
∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑘 +

∞
∑

𝑘=0

𝑠𝑘

𝑘!
=

∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑘 + 𝑒𝑠 ⟹

∞
∑

𝑘=0

𝑠𝑘

𝑘!
𝑘 = 𝑒𝑠 + 𝑠𝑒𝑠 − 𝑒𝑠 = 𝑠𝑒𝑠

Now we show how to transform the improper (semi-infinite) integral to the definite integral on the interval [0, 1] in (42).

log𝛤 (𝑘 + 1) = ∫

∞

0

[

𝑘 − 1 − 𝑒−𝑘𝑥
1 − 𝑒−𝑥

]

𝑒−𝑥

𝑥
𝑑𝑥

We make the change of variable 𝑢 = 𝑒−𝑥 ⇒ 𝑥 = − ln 𝑢, or 1∕𝑥 = −1∕ ln 𝑢. Thus 𝑑𝑢 = −𝑒−𝑥𝑑𝑥 = −𝑢𝑑𝑥, ⇒ 𝑑𝑥 = − 𝑑𝑢
𝑢 . Also, we have

𝑢(0) = 𝑒−(0) = 1, and 𝑢(∞) = 𝑒−(∞) = 0, [for this case log (⋅) = ln (⋅)]. Substituting into the previous improper integral (i.e. from (42)),
we obtain the definite integral:

∫

𝑢(∞)=0

𝑢(0)=1

[

𝑘 − 1 − 𝑢𝑘
1 − 𝑢

]

𝑢
(− ln 𝑢)

(

−𝑑𝑢
𝑢
)

= −∫

1

0

[

𝑘 − 1 − 𝑢𝑘
1 − 𝑢

]

𝑑𝑢
ln (𝑢)

⟹ log𝛤 (𝑘 + 1) = ln𝛤 (𝑘 + 1) = ∫

1

0

[

1 − 𝑢𝑘
1 − 𝑢

− 𝑘
]

𝑑𝑢
ln (𝑢)

Substituting into Eq. (56) —that is, initially into (41)—

𝐇𝑃𝑜𝑖𝑠𝑠 =
(

𝑠 − 𝑠 log (𝑠)
)

+ 𝑒−𝑠
∞
∑

𝑘=0

𝑠𝑘

𝑘!

[

log𝛤 (𝑘 + 1)
]

=
(

𝑠 − 𝑠 log (𝑠)
)

+ 𝑒−𝑠
∞
∑

𝑘=0

𝑠𝑘

𝑘! ∫

1

0

[

1 − 𝑢𝑘
1 − 𝑢

− 𝑘
]

𝑑𝑢
ln (𝑢)

=
(

𝑠 − 𝑠 log (𝑠)
)

+ 𝑒−𝑠 ∫

1

0

∞
∑

𝑘=0

𝑠𝑘

𝑘!

[

1 − 𝑢𝑘
1 − 𝑢

− 𝑘
]

𝑑𝑢
ln (𝑢)

=
(

𝑠 − 𝑠 log (𝑠)
)

+ 𝑒−𝑠 ∫

1

0

{[

1
1 − 𝑢

∞
∑

𝑘=0

𝑠𝑘

𝑘!
(

1 − 𝑢𝑘
)

]

−
( ∞
∑

𝑘=0

𝑠𝑘𝑘
𝑘!

)}

𝑑𝑢
ln (𝑢)

=
(

𝑠 − 𝑠 log (𝑠)
)

+ ∫

1

0

{

𝑒−𝑠

1 − 𝑢

[ ∞
∑

𝑘=0

𝑠𝑘

𝑘!
−

∞
∑

𝑘=0

(𝑠𝑢)𝑘

𝑘!

]

− 𝑒−𝑠
( ∞
∑

𝑘=0

𝑠𝑘𝑘
𝑘!

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝑠𝑒𝑠

}

𝑑𝑢
ln (𝑢)

=
(

𝑠 − 𝑠 log (𝑠)
)

+ ∫

1

0

{

𝑒−𝑠

1 − 𝑢
[

𝑒𝑠 − 𝑒𝑠𝑢
]

− 𝑒−𝑠
(

𝑠𝑒𝑠
)

}

𝑑𝑢
ln (𝑢)

=
(

𝑠 − 𝑠 log (𝑠)
)

+ ∫

1

0

{

1 − 𝑒−𝑠(1−𝑢)
1 − 𝑢

− 𝑠
}

𝑑𝑢
ln (𝑢)

(57)

With this, Eq. (41) is proved —from which we can get directly (43)—.

Appendix D

Binomial stochastic entropy function
We now show the computational details of the binomial stochastic entropy function. The standard binomial distribution is

𝑃𝑛(𝑘) = 𝑓𝐵𝑖𝑛(𝑘) = 𝐵(𝑘; 𝑛, 𝑝) =
(𝑛
𝑘

)

𝑝𝑘(1 − 𝑝)𝑛−𝑘. This is a p.d.f., which has a factorial coefficient. And we can express it in terms
of the Gamma function as follows

(

𝑛
𝑘

)

= 𝑛!
𝑘!(𝑛 − 𝑘)!

=
𝛤 (𝑛 + 1)

𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)
(58)

In the factor containing the logarithm in (44), we simply systematically apply the elementary logarithmic properties to it.

𝐇𝐵𝑖𝑛 = −
∞
∑

𝑘=0

𝛤 (𝑛 + 1)𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝐒(𝑏𝑖𝑛)

×
[

log𝛤 (𝑛 + 1) − log𝛤 (𝑘 + 1) − log𝛤 (𝑛 − 𝑘 + 1) − 𝑘 log 𝑝 + (𝑛 − 𝑘) log
[

1 − 𝑝
]

]

24
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= −𝐒(𝑏𝑖𝑛) ×
[

log𝛤 (𝑛 + 1) − log𝛤 (𝑘 + 1) − log𝛤 (𝑛 − 𝑘 + 1)
]

− 𝐒(𝑏𝑖𝑛) ×
[

𝑘 log 𝑝 + (𝑛 − 𝑘) log
[

1 − 𝑝
]

]

(59)

Then

− 𝐒(𝑏𝑖𝑛)
[

log𝛤 (𝑛 + 1) − log𝛤 (𝑘 + 1) − log𝛤 (𝑛 − 𝑘 + 1)
]

= −𝛤 (𝑛 + 1) log𝛤 (𝑛 + 1)
∞
∑

𝑘=0

𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)

+
∞
∑

𝑘=0

𝛤 (𝑛 + 1) log𝛤 (𝑛 − 𝑘 + 1)𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)
+

∞
∑

𝑘=0

𝛤 (𝑛 + 1) log𝛤 (𝑘 + 1)𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)

So another term

− 𝐒(𝑏𝑖𝑛)
[

𝑘 log 𝑝 + (𝑛 − 𝑘) log
[

1 − 𝑝
]

]

= − log 𝑝
∞
∑

𝑘=0
𝑘

𝛤 (𝑛 + 1)
𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)

𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

− log (1 − 𝑝)
∞
∑

𝑘=0
(𝑛 − 𝑘)

𝛤 (𝑛 + 1)
𝛤 (𝑘 + 1)𝛤 (𝑛 − 𝑘 + 1)

𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

= − log 𝑝
∞
∑

𝑘=0
𝑘 𝑛!
𝑘!(𝑛 − 𝑘)!

𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘 − log (1 − 𝑝)

∞
∑

𝑘=0
(𝑛 − 𝑘) 𝑛!

𝑘!(𝑛 − 𝑘)!
𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘

After carrying out some algebraic manipulations on the quotient factorial, we get

= −𝑛𝑝 log 𝑝
∞
∑

𝑗=0

(

𝑛
𝑗

)

𝑝𝑗
(

1 − 𝑝
)𝑛−𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∑∞
𝑗=0 𝑓𝐵𝑖𝑛(𝑗)=1

−𝑛(1 − 𝑝) log (1 − 𝑝)
∞
∑

𝑗=0

(

𝑛
𝑗

)

𝑝𝑗
(

1 − 𝑝
)𝑛−𝑗

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=1

So, we get the binary entropy (see Eq. (45))

𝑛ℎ(𝑝) = −𝑛𝑝 log 𝑝 − 𝑛(1 − 𝑝) log (1 − 𝑝) = −𝑛
[

𝑝 log 𝑝 + (1 − 𝑝) log (1 − 𝑝)
]

(60)

We define the expected values (46) and (47) to simplify Eq. (48), and now we show the more detailed calculation.

𝐄
[

log𝛤 (𝑘 + 1)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸𝐵𝑖𝑛(𝑛,𝑝)

=
∞
∑

𝑘=0
log𝛤 (𝑘 + 1) 𝑛!

𝑘!(𝑛 − 𝑘)!
𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘 (61)

Similarly

𝐄
[

log𝛤 (𝑛 − 𝑘 + 1)
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐸𝐵𝑖𝑛(𝑛,1−𝑝)

=
∞
∑

𝑘=0
log𝛤 (𝑛 − 𝑘 + 1) 𝑛!

𝑘!(𝑛 − 𝑘)!
𝑝𝑘
(

1 − 𝑝
)𝑛−𝑘 (62)

These expected values are calculated using the following formulas developed by Cheraghchi (specially Theorem 1) [43]. We obtain
a more general formula (see Eqs. (49) and (50)) in terms of integral functions similar to the Poisson entropy function. Next, we put
the formula (2) of the Ref. [43], which we use to calculate the expected values:

𝐄
[

log𝛤 (𝑋 + 𝛼)
]

= log𝛤 (𝛼) + ∫

∞

0

[

𝜇𝑒−𝑡

𝑡
−
𝑒−𝛼𝑡(1 −𝐌(−𝑡))

𝑡(1 − 𝑒−𝑡)

]

𝑑𝑡 (63)

where 𝐌(𝑡)14 is the moment generating function (MGF). In elementary probability theory (see the following references: [9,18,27,
28,35]) the binomial distribution function has the MGF following

𝐌𝑋 (𝑡) =
𝑛
∑

𝑚=0
𝑒𝑡𝑚

(

𝑛
𝑚

)

𝑝𝑚
(

1 − 𝑝
)𝑛−𝑚 =

[

𝑝𝑒𝑡 + 𝑞
]𝑛 =

[

𝑝𝑒𝑡 + (1 − 𝑝)
]𝑛 (64)

Thus for 𝐌𝑋 (−𝑡) =
[

𝑝𝑒−𝑡 + (1 − 𝑝)
]𝑛. With 𝜇 = 𝑛𝑝, 𝛼 = 1 ⇒ log𝛤 (𝛼 = 1) = log (1) = 0, so

𝐸𝐵𝑖𝑛(𝑛, 𝑝) = ∫

∞

0

[

𝑛𝑝𝑒−𝑡

𝑡
−
𝑒−𝑡

[

1 −
(

𝑝𝑒−𝑡 + (1 − 𝑝)
)𝑛]

𝑡(1 − 𝑒−𝑡)

]

𝑑𝑡 (65)

Similarly for

𝐸𝐵𝑖𝑛(𝑛, 1 − 𝑝) = ∫

∞

0

[

𝑛𝑒−𝑡

𝑡
−
𝑛𝑝𝑒−𝑡

𝑡
−
𝑒−𝑡

[

1 −
(

𝑝 − (1 − 𝑝)𝑒−𝑡
)𝑛]

𝑡(1 − 𝑒−𝑡)

]

𝑑𝑡 (66)

14 We must point out that in this case, 𝑡 in the MGF is only a parameter (dummy variable), and does not represent time. This comes from elementary
25

probability theory (see references, and also see Section 2.1)
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Now we proceed to add both expressions (64) and (66), and we subtract the term of the Gamma function (42); that is, − log𝛤 (𝑛 + 1)+
𝐸𝐵𝑖𝑛(𝑛, 𝑝) + 𝐸𝐵𝑖𝑛(𝑛, 1 − 𝑝) as in Eq. (48). And after carrying out several simplifications we obtain

− log𝛤 (𝑛 + 1) +
[

𝐸𝐵𝑖𝑛(𝑛, 𝑝) + 𝐸𝐵𝑖𝑛(𝑛, 1 − 𝑝)
]

= −∫

∞

0

[

𝑛 − 1 − 𝑒−𝑛𝑡
1 − 𝑒−𝑡

]

𝑒−𝑡

𝑡
𝑑𝑡

+ ∫

∞

0

[

−
𝑒−𝑡

[

1 −
(

𝑝 − (1 − 𝑝)𝑒−𝑡
)𝑛]

𝑡(1 − 𝑒−𝑡)
+ 𝑛𝑒−𝑡

𝑡
−
𝑒−𝑡

[

1 −
(

𝑝 − (1 − 𝑝)𝑒−𝑡
)𝑛]

𝑡(1 − 𝑒−𝑡)

]

𝑑𝑡

= ∫

∞

0

[

[

𝑒−𝑡
(

1 − 𝑝 + 𝑝𝑒−𝑡
)𝑛]

𝑡(1 − 𝑒−𝑡)
+
𝑒−𝑡

[

𝑝 + (1 − 𝑝)𝑒−𝑡
]𝑛

𝑡(1 − 𝑒−𝑡)
− 𝑒−𝑡

𝑡(1 − 𝑒−𝑡)
− 𝑒−𝑛𝑡𝑒−𝑡

𝑡(1 − 𝑒−𝑡)

]

𝑑𝑡

= ∫

∞

0

[

[

𝑒−𝑡
(

1 − 𝑝 + 𝑝𝑒−𝑡
)𝑛]

𝑒−𝑡𝑡(𝑒𝑡 − 1)
+
𝑒−𝑡

[

𝑝 + (1 − 𝑝)𝑒−𝑡
]𝑛

𝑒−𝑡𝑡(𝑒𝑡 − 1)
− 𝑒−𝑡

𝑒−𝑡𝑡(𝑒𝑡 − 1)
− 𝑒−𝑡𝑒−𝑛𝑡

𝑒−𝑡𝑡(𝑒𝑡 − 1)

]

𝑑𝑡

= ∫

∞

0

[

(

1 − 𝑝 + 𝑝𝑒−𝑡
)𝑛

𝑡(𝑒𝑡 − 1)

]

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻1

+∫

∞

0

[

[

𝑝 + (1 − 𝑝)𝑒−𝑡
]𝑛

𝑡(𝑒𝑡 − 1)

]

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻2

−∫

∞

0

[

(1 + 𝑒−𝑛𝑡)
𝑡(𝑒𝑡 − 1)

]

𝑑𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐻3

(67)

o, we have

𝐇𝐵𝑖𝑛(𝑋) = 𝑛ℎ(𝑝) +𝐇1 +𝐇2 −𝐇3 (68)

e show the development and transformation —of the integral semi-infinite to the interval [0, 1]— of the partial entropies 𝐇1 (𝐇2,
similarly) and 𝐇3. Transforming the integrand once again as:

[

1 − 𝑝(1 − 𝑒−𝑡)
]

and
(

𝑒𝑡 − 1
)

= 𝑒𝑡
(

1 − 𝑒−𝑡
)

.

𝐇1 = ∫

∞

0

[

(

1 − 𝑝 + 𝑝𝑒−𝑡
)𝑛

𝑡(𝑒𝑡 − 1)

]

𝑑𝑡 = ∫

∞

0

[

1 − 𝑝(1 − 𝑒−𝑡)
]𝑛

𝑡𝑒𝑡
(

1 − 𝑒−𝑡
) 𝑑𝑡

nce again, we make the following variable changes, to transform the integral: 𝑢 = 1 − 𝑒−𝑡 ⇒ 𝑑𝑢 = 𝑒−𝑡𝑑𝑡. But we also have to
−𝑡 = 1 − 𝑢, and 𝑒𝑡 = 1

1−𝑢 , hence 𝑡 = ln
[ 1
1−𝑢

]

= − ln
(

1 − 𝑢
)

⇒ 𝑑𝑡 = 𝑑𝑢
𝑒−𝑡 =

𝑑𝑢
(1−𝑢) . For the integral limits we have: 𝑢(0) = 1 − 𝑒−(0) = 0,

and 𝑢(∞) = 1 − 𝑒−(∞) = 1 − 0 = 1, and plugging it into the integral,

𝐇1 = ∫

∞

0

[

1 − 𝑝(1 − 𝑒−𝑡)
]𝑛

𝑡𝑒𝑡
(

1 − 𝑒−𝑡
) 𝑑𝑡 = ∫

1

0

[

1 − 𝑝𝑢
]𝑛

− ln
(

1 − 𝑢
)

(

1 − 𝑢
) 𝑑𝑢
(

1 − 𝑢
) = −∫

1

0

[

1 − 𝑝𝑢
]𝑛

ln
(

1 − 𝑢
)𝑑𝑢 (69)

Similarly, we can transform 𝐇2:

𝐇2 = ∫

∞

0

[

[

𝑝 + (1 − 𝑝)𝑒−𝑡
]𝑛

𝑡(𝑒𝑡 − 1)

]

𝑑𝑡 = −∫

1

0

[

1 − (1 − 𝑝)𝑢
]𝑛

ln
(

1 − 𝑢
) 𝑑𝑢 (70)

nd for 𝐇3:

𝐇3 = ∫

∞

0

[

(1 + 𝑒−𝑛𝑡)
𝑡(𝑒𝑡 − 1)

]

𝑑𝑡 = ∫

1

0

1 +
(

1 − 𝑢
)𝑛

𝑢 ln
(

1 − 𝑢
) 𝑑𝑢 (71)

inally, we get the full binomial entropy functions (48) —from this Eqs. (49) and (50)—,

𝐇𝐵𝑖𝑛(𝑋) = 𝑛ℎ(𝑝) − ∫

1

0

[

1 − 𝑝𝑢
]𝑛

ln
(

1 − 𝑢
)𝑑𝑢 − ∫

1

0

[

1 − (1 − 𝑝)𝑢
]𝑛

ln
(

1 − 𝑢
) 𝑑𝑢 + ∫

1

0

1 +
(

1 − 𝑢
)𝑛

𝑢 ln
(

1 − 𝑢
) 𝑑𝑢 (72)
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