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México City, México
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Abstract
Shoeprint marks present valuable information for forensic investigators to resolve a crime.
These marks can be helpful to find the brand of the shoe and can make the investigation
easier. In this paper, we present an associative model-based algorithm to match noisy shoeprint
patterns with a brand of shoe. The shoeprints are corrupted with additive, subtractive and
mixed noises. A particular case of subtractive noise are partial shoeprints such as toe, heel,
left-half and right-half prints. The Morphological Associative Memories (MAMs) were applied.
Both memories, max and min, recognize noisy shoeprints corrupted with 98% additive and
subtractive noise, respectively, with an effectiveness of 100%. The images corrupted with mixed
noise were recognized when the additive or subtractive noise applied was greater than the mixed
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noise; in this case, the recalling was around 70%, otherwise, both memories failed to recognize
the shoeprints.

Keywords : Forensic Science; Computational Forensics; Computational Intelligence; Associative
Models; Morphological Associative Memories; Shoeprint Recognition.

1. INTRODUCTION

Forensic Science (FS) is the application of various
sciences to those criminal and civil laws that are
enforced by police agencies in a criminal justice sys-
tem. The main goal of FS is to analyze physical
evidence and provide expert witness testimony. It
justifies the validity of conclusions drawn by the
forensic investigation authorities.

Forensic-related technologies1 are potentially
capable of improving the lives of many people. Com-
putational intelligence, a recently growing field of
computer science, poses a prodigious opportunity to
improve FS. Computational Intelligence techniques
have been widely used in the domain of computer
forensics, which have been successfully used in many
real-world applications for a variety of engineering
problems.

Computational Intelligence is based on human
intelligence, and therefore it is expected to accom-
plish the task equal to or even beyond human pro-
ficiency. It relies on several key paradigms, such
as evolutionary algorithms, neural networks, fuzzy
systems, and multi-agent systems. In this work, we
applied another paradigm named Associative Mem-
ories (AMs).

1.1. Related Work

Bouridane et al.2 used an iterative process to
reconstruct a shoeprint image from the coefficients
obtained when an unknown image is decomposed
by the use of fractals. The authors had a dataset
of 145 images. When they applied small rotations,
the result was 88% of recognition, and with small
translations, they obtained 100% of effectiveness. In
this paper, we use the terms: percent of recognition
and percent of effectiveness indistinctly.

In another work, a Power Spectral Density
(PSD) method and Zernike Moments (ZMs) were
applied to recognize shoeprints.3 The dataset had
400 real shoeprint images. As a first experiment,
the PSD method was used to obtain the simi-
larity between images by the means of correla-
tion coefficients. They generated 5 partial images
from 200 shoeprints. The effectiveness was of 86%.

In the second experiment, they generated eight
rotated, translated and scaled images from an origi-
nal shoeprint. They applied ZM and the recognition
was around 98%.

Gabor and Radon transforms were applied to rec-
ognize shoeprints with rotations.4 They used 200
images and generated 3 different full prints and 4
partial prints. Radon transform was applied to esti-
mate the shoeprint direction and Gabor coefficients
were used to match images. The Euclidean distance
algorithm performed the matching. The maximum
cumulative match score for partial prints was 100%
at rank 3 which means that the image was found
among the three images with a maximum score,
i.e. the image can be confounded with other two
images. In Ref. 5, the authors added another experi-
ment and tested the algorithm with some levels of
Gaussian white and salt and pepper noises. With a
signal to noise ratio (SNR) of 15.28 dB, the recogni-
tion rate was of 68.52% with salt and pepper noise
and 67.67% with Gaussian white noise.

In Ref. 6, discrete cosine transform (DCT) was
applied to obtain a vector of coefficients which are
presented to Fisher’s linear discriminant (FLD) and
principal component analysis (PCA) to reduce the
vector dimensionality. The dataset was composed
of 235 shoeprint images. They used the Euclidean
distance for the matching. First, the test image was
corrupted by Gaussian noise with mean 0 and vari-
ance 0.01 and filtered with median filter. The per-
formance without noise is optimum when the num-
ber of coefficients (from DCT) is around 32. The
algorithm is immune to noise if the noise variance
is in the order of 0.01.

Li et al.7 proposed a method that first con-
structs different scale spaces in order to detect local
extrema in the underlying shoeprint images. Then,
they applied the scale-invariant feature transform
(SIFT) to obtain keypoints that are invariant to
scale, rotation, and translation. They used cross-
correlation for matching. The dataset consists of
430 full-size shoeprints. They showed that their pro-
posal can retrieve toe prints and heel prints more
effectively than left-half prints and right-half prints,
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and there is no difference in the results when noise
is added.

Also, Gabor transform and ZMs were applied to
recognize partial shoeprints.8 The authors first pre-
processed the images manually to highlight the orig-
inal image features and to remove the background.
They used normalized correlation coefficient as a
similarity score. The Gabor transform was applied
to obtain the textures, and the ZMs to represent
the shoeprint patterns. They used 1225 images for
training and 104 images for testing. They obtained
a 68.04% of effectiveness with a 20-rank recognition
rate.

Luostarinen and Lehmussola9 created a set of
shoeprints with 367 images and tested several algo-
rithms to recognize partial shoeprints. The algo-
rithms were PSD, Hu’s Moment Invariants, Gabor
Transform, Fourier–Mellin Transform, Mahalanobis
Distance Map. Local Interest Points used Random
Sample Consensus (RANSAC) and Spectral Corre-
spondence of Local Interest Points. The RANSAC
algorithm showed the best results for partial prints:
heel, tip, toes, inner toes, and outer toes and for
rotations of 30◦, 45◦, and 90◦.

The Secondary Positioning based on the shoe
print image feature10 is applied to positioning a
shoeprint, therefore, the recognition can be easier
to perform and it is not necessary to apply algo-
rithms that are invariant to rotations.

The SIFT, PCA, and RANSAC were applied
to recognize partial shoeprints.11 SIFT was used
to obtain keypoints, then, PCA was applied to
reduce the set dimension of the keypoints. The
matching is performed with Euclidean distance.
Finally, RANSAC removes mistakes due to noise
and obtains the correct matching point pairs. The
authors did not mention the number of shoeprints
for their experiment. The results of effectiveness
were 95%, 84%, 92%, 94% for toe, heel, left-half,
and right-half, respectively.

A neural code descriptor12 was applied for auto-
matic shoeprint retrieval, the authors obtained a
cumulative match score of 88.7% at top 10.

A denoising deep belief network (DBN) was
applied to extract local features from partial,
noisy shoeprint images and a spatial pyramid
matching (SPM) was used to obtain a local-
to-global matching score.13 The dataset has 536
shoeprint images. This algorithm achieves a cumu-
lative match score of 65.67% at top 10 which
is 5.60% higher than the second best performing
method.

Zhang et al. applied a convolutional neural net-
work14 to extract features for shoeprint retrieval.
They use three datasets to test their method. In
the first dataset, they randomly remove pixels from
images to simulate dust, in the second dataset, the
images are corrupted with Gaussian noise and pixel
removal simulating blood, and finally, they added
more Gaussian noise and pixel removal. They found
the best results at rank 5 with the following per-
centages of recognition: 80.3% in dataset 2, 94.3%
in datasets 2 and 3, and 96.2 in datasets 1 and 2.

In this work, we propose the use of Morpho-
logical AMs (MAMs) for recognizing shoeprints.
We test our algorithm with images corrupted with
additive, subtractive, and mixed noises. The partial
shoeprints (toe, heel, left-half, and right-half) are
considered as a particular case of subtractive noise.

2. MATERIALS AND METHODS

In this section, we describe the basic concepts of
AMs, the theory of MAMs and finally, the algorithm
of our proposal.

2.1. Associative Memories

An AM15 is a system which takes a codified input
or pattern and produces an output which can be
either a class label or another pattern. One of the
main advantages of AMs is that when they are cor-
rectly designed, they can accurately recover a pat-
tern even if it has been altered. This robustness
against alterations makes them attractive for appli-
cations in which the input patterns are likely to be
noisy.

Two phases comprise the design of an AM: learn-
ing and recalling. In the learning phase, the mem-
ory is trained by associating input patterns x and
output patterns y. After the AM was trained, out-
put patterns can be recalled by presenting the input
patterns to the memory. This task is performed by
the recalling phase.

Formally, we can say that for a k integer and pos-
itive, the corresponding association will be denoted
as (xk, yk). The associative memory M is repre-
sented by a matrix whose ijth component is mij.
Memory M is generated from an a priori finite set
of known AMs, called the fundamental or training
set associations.

Each column vector that represents input and
output patterns will have n and m components,
respectively, which values belong to the set of real
numbers.
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If µ is an index, the fundamental set is repre-
sented as {(xµ, yµ) |µ = 1, 2, . . . , p} with p as the
set cardinality. The patterns that form the funda-
mental set are called fundamental patterns.

There are two types of AMs concerning to the
nature of the input and output patterns.

A memory is Autoassociative if it holds that xµ =
yµ ∀µ ∈ {1, 2, . . . , p}, then one of the requisites is
that n = m.

A memory is Heteroassociative when ∃µ ∈
{1, 2, . . . , p} for which xµ �= yµ. Note that there
can be heteroassociative memories with n = m.

2.2. Morphological Associative
Memories

This paper is strongly based on the work of Ritter
et al.16 The fundamental difference between classic
AMs (Lernmatrix,17 Correlograph,18 Linear Asso-
ciator,19 and Hopfield20) and MAMs16 lies in the
operational bases of the latter, which are the mor-
phological operations: dilation and erosion. This
model broke out of the traditional mold of clas-
sic memories which use conventional operations for
vectors and matrices in learning phase and sum
of multiplications for recovering patterns. MAMs
change products to sums and sums to maximum or
minimum in both phases.

The basic computations occurring in the pro-
posed morphological network are based on the
algebraic lattice structure (R,∨,∧,+), where the
symbols ∨ and ∧ denote the binary operations of
maximum and minimum, respectively. Using the
lattice structure (R,∨,∧,+), for an m × p matrix
A and a p × n matrix B with entries from R, the
matrix product C = A∇B, also called the max
product of A and B, is defined by

cij =
p∨

k=1

aik + bkj = (ai1 + b1j) ∨ · · · ∨ (aip + bpj).

(1)

The min product of A and B induced by the
lattice structure is defined in a similar fash-
ion. Specifically, the ijth entry of C = A∆ B is
given by

cij =
p∧

k=1

aik + bkj = (ai1 + b1j) ∧ · · · ∧ (aip + bpj).

(2)

Suppose we are given a vector pair x =
(x1, x2, . . . , xn)t ∈ Rn and y = (y1, y2, . . . , ym)t ∈
Rm. An associative morphological memory that will
recall the vector when presented the vector is given
as follows:

W = y∇(−x)t =




y1 − x1 · · · y1 − xn

...
. . .

...

ym − x1 · · · ym − xn


. (3)

Since W satisfies the equation W ∇x = y as can
be verified by the simple computation in

W ∇x =




n∨
i=1

(y1 − xi + xi)

...
n∨

i=1

(ym − xi + xi)




= y. (4)

Henceforth, let (x1, y1), (x2, y2), . . . , (xp, yp) be p
vector pairs with xk = (xk

1 , x
k
2 , . . . , x

k
n)t ∈ Rn and

yk = (yk
1 , yk

2 , . . . , yk
m)t ∈ Rm for k = 1, 2, . . . , p. For

a given set of pattern associations {(xk,yk) | k =
1, 2, . . . , p}, we define a pair of associated pattern
matrices (X,Y ), where X = (x1,x2, . . . ,xp) and
Y = (y1,y2, . . . ,yp). Thus, X is of dimension n× p

with ijth entry xj
i and Y is of dimension m×p with

ijth entry yj
i . Since yk∇ (−xk)t = yk ∆(−xk)t,

the notational burden is reduced by denoting these
identical morphological outer vector products by
yk · (−xk)t. With each pair of matrices (X,Y ), we
associate two natural morphological m × n memo-
ries M and W defined by

M =
p∨

k=1

(yk · (−xk)t), (5)

W =
p∧

k=1

(yk · (−xk)t). (6)

With these definitions, we present the algorithms
for the training and recalling phases.

2.2.1. Training phase

(1) For each p association (xµ,yµ), the mini-
mum product is used to build the matrix
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yµ∆(−xµ)t of dimensions m×n, where the
input transposed negative pattern xµ is defined
as (−xµ)t = (−xµ

1 ,−xµ
2 , . . . ,−xµ

n).
(2) The maximum and minimum operators (∨ and

∧) are applied to the p matrices to obtain M
and W memories as Eqs. (5) and (6) show.

2.2.2. Recalling phase

In this phase, the minimum or maximum product,
∆ or ∇, is applied between memories M or W and
input pattern xω, where ω ∈ {1, 2, . . . , p}, to obtain
the column vector y of dimension m as given by the
following equations:

y = M ∆xω, (7)

y = W ∇xω. (8)

In this work, we will apply heteroassociative
memories.

2.3. Types of Noise

MAMs deal with two types of noise: additive and
subtractive but cannot deal with mixed noise.

The following example illustrates these three
types of noise. Suppose we have the original byte:

Original byte 10011100 156
Additive noise 11111111 255
Subtractive noise 00000000 0
Mixed noise 11100100 228

We add additive noise when we replaced zeros
for ones. In the case of the subtractive noise, we
replace ones for zeros, and if we add additive and
subtractive noises at the same time, we have mixed
noise.

That is what it happens at bit level. In an image,
these types of noise would appear as shown in Fig. 1.

From Fig. 1, we observe that the suppression of
the heel can be interpreted as adding a white color
in that part which means applying additive noise,
i.e. place values of 255 (gray level) in the heel. On
the other hand, in the third image (from left to
right), we observe black and white colors added to
the shoeprint which is the mixed noise. The last
image represents the subtractive noise because we
are placing values of zero in the same part of the
shoeprint, i.e. we added black color.

Fig. 1 Illustration of the types of noise. From left to right:
the original image, additive noise, subtractive noise, and
mixed noise.

Fig. 2 Shoeprint of the Flexi brand.

2.4. Dataset

We created a shoeprint set of 53 images from dif-
ferent brands: Adidas, Andrea, Flexi, Polo, World,
Ozono, Pirma Brasil, Wilson, Jordan, and Nike.
The images have a fixed size: 50 × 50 pixels in
Fig. 2, we show a sample of the set that is a Flexi
shoeprint.

We have five different prints for each brand and
for Wilson we obtained three prints. The images
were preprocessed. At the beginning, the images
had three channels (color images); therefore, we had
to convert them into a single channel light intensity
levels as shown in the following equation:

f(R,G,B) = 0.299R + 0.587G + 0.114B. (9)

Now, the images are represented with matrices
whose values are in the range of 0–255. Each matrix
must be converted to a vector as shown in Fig. 3,
where ω is the pattern index and r and s are the
rows and columns of the image, respectively.

These vectors are the input patterns, the dimen-
sion is 2500 (50× 50). The dimension of the output
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patterns is 11 because we have 11 brands of shoes.
The form of the vectors y to build the max and
min memories is as follows, respectively. We applied
the idea of Linear Associator,19 and we selected the
value of 500 because we found that a value greater
than the greatest element in the dataset results in
a better performance21:

yclass1 =




500
0
0
0
0
0
0
0
0
0
0




, yclass2 =




0
500
0
0
0
0
0
0
0
0
0




, yclass3 =




0
0

500
0
0
0
0
0
0
0
0




,

yclass4 =




0
0
0

500
0
0
0
0
0
0
0




, yclass5 =




0
0
0
0

500
0
0
0
0
0
0




, yclass6 =




0
0
0
0
0

500
0
0
0
0
0




,

yclass7 =




0
0
0
0
0
0

500
0
0
0
0




, . . . , yclass11 =




0
0
0
0
0
0
0
0
0
0

500




, ȳclass1 =




−500
0
0
0
0
0
0
0
0
0
0




,

ȳclass2 =




0
−500

0
0
0
0
0
0
0
0
0




, ȳclass3 =




0
0

−500
0
0
0
0
0
0
0
0




, ȳclass4 =




0
0
0

−500
0
0
0
0
0
0
0




,

ȳclass5 =




0

0

0

0

−500

0

0

0

0

0

0




, ȳclass6 =




−

0

0

0

0

0

500

0

0

0

0

0




,

ȳclass7 =




0

0

0

0

0

0

−500

0

0

0

0




, . . . , ȳclass11 =




0

0

0

0

0

0

0

0

0

0

−500




.

We defined two different types of output vectors
to build two different MAMs: max and min, respec-
tively.

The corresponding output vectors for each input
vector is
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Fig. 3 The matrices that represent the images are converted to a vector to be processed by the memories.

x1
Adidas

x2
Adidas

x3
Adidas

x4
Adidas

x5
Adidas




→
{

yclass1,

ȳclass1,

x6
Andrea

x7
Andrea

x8
Andrea

x9
Andrea

x10
Andrea




→
{

yclass2,

ȳclass2,

x11
Flexi

x12
Flexi

x13
Flexi

x14
Flexi

x15
Flexi




→
{

yclass3,

ȳclass3,

x16
Polo

x17
Polo

x18
Polo

x19
Polo

x20
Polo




→
{

yclass4,

ȳclass4,

x21
World

x22
World

x23
World

x24
World

x25
World




→
{

yclass5,

ȳclass5,

x26
Ozono

x27
Ozono

x28
Ozono

x29
Ozono

x30
Ozono




→
{

yclass6,

ȳclass6,

x31
Pirma

x32
Pirma

x33
Pirma

x34
Pirma

x35
Pirma




→
{

yclass7,

ȳclass7,

x36
Brasil

x37
Brasil

x38
Brasil

x39
Brasil

x40
Brasil




→
{

yclass8,

ȳclass8,

x41
Jordan

x42
Jordan

x43
Jordan

x44
Jordan

x45
Jordan




→
{

yclass9,

ȳclass9,

x46
Nike

x47
Nike

x48
Nike

x49
Nike

x50
Nike




→
{

yclass10,

ȳclass10,

x51
Wilson

x52
Wilson

x53
Wilson


 →

{
yclass11,
ȳclass11.

We have a main vector Y where the shoe brands
are stored.

Y =




Adidas

Andrea

Flexi

Polo

World

Ozono

Pirma

Brasil

Jordan

Nike

Wilson




.

Now, an illustrative example for training and recall-
ing phases is presented.

Suppose we have the following three pairs (p = 3)
of vectors to be associated. The dimension of the
input vectors are 15 (n = 4) and the dimension of
output vectors is 3 (m = 3). These patterns will be
used to build a max-type MAM:

x1 =




0
255
127
48


→ y1 =




500
0
0


, x2 =




112
25
201
15


→ y2 =




0
500
0


,

x3 =




10
23
167
220


 → y3 =




0
0

500


.
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We associate the first pair of patterns.

y1 · (−x1)t =




500

0

0


 · −(0 255 127 48)

=




500 − 0 500 − 255 500 − 127 500 − 48

0 − 0 0 − 255 0 − 127 0 − 48

0 − 0 0 − 255 0 − 127 0 − 48


,

y1 · (−x1)t =




500 245 373 452

0 −255 −127 −48

0 −255 −127 −48


.

In the same way, we associate the second and the
third pairs of patterns

y2 · (−x2)t =




0

500

0


 · −(112 25 201 15)

=




0 − 112 0 − 25 0 − 201 0 − 15

500 − 112 500 − 25 500 − 201 500 − 15

0 − 112 0 − 25 0 − 201 0 − 15


,

y2 · (−x2)t =



−112 −25 −201 −15

388 475 299 485

−112 −25 −201 −15


,

y3 · (−x3)t =




0

0

500


 · −(10 23 167 220)

=




0 − 10 0 − 23 0 − 167 0 − 220

0 − 10 0 − 23 0 − 167 0 − 220

500 − 10 500 − 23 500 − 167 500 − 220


,

y3 · (−x3)t =



−10 −23 −167 −220

−10 −23 −167 −220

490 477 333 280


.

Now, we build the max-type MAM by finding the
maximum element of each association as follows:

M =




500 245 373 452

0 −255 −127 −48

0 −255 −127 −48




∨

−112 −25 −201 −15

388 475 299 485

−112 −25 −201 −15




∨

−10 −23 −167 −220

−10 −23 −167 −220

490 477 333 280


,

M =




500 245 373 452

388 475 299 485

490 477 333 280


.

In the recalling phase, we present the three input
patterns to the max MAM:

M∆x1 =

0
BB@

500 245 373 452

388 475 299 485

490 477 333 280

1
CCA ∆

0
BB@

0
255
127
48

1
CCA

=

0
@

(500 + 0) ∧ (245 + 255) ∧ (373 + 127) ∧ (452 + 48)
(388 + 0) ∧ (475 + 255) ∧ (299 + 127) ∧ (485 + 48)
(490 + 0) ∧ (477 + 255) ∧ (333 + 127) ∧ (280 + 48)

1
A,

M∆x1 =

0
@

500 ∧ 500 ∧ 500 ∧ 500
388 ∧ 730 ∧ 426 ∧ 533
490 ∧ 732 ∧ 460 ∧ 328

1
A =

0
@

500
388
328

1
A.

We equate to zero each element that is not equal to
500, then which obtains

M∆x1 =


500

388
328


 →


500

0
0


 = y1.

It is observed that we recalled the correspond-
ing output pattern. Referring to our method, it can
be said that input pattern x1 corresponds to class
1 because the value of 500 is located at the first
element. If we refer to the main vector Y, and if
we have just three brands of shoes, this result will
indicate that we recalled Adidas brand.

Now, the second input pattern to the max MAM
is presented:

M∆x2 =

0
BB@

500 245 373 452

388 475 299 485

490 477 333 280

1
CCA ∆

0
BBBB@

112

25

201

15

1
CCCCA

=

0
BB@

(500 + 112) ∧ (245 + 25) ∧ (373 + 201) ∧ (452 + 15)

(388 + 112) ∧ (475 + 25) ∧ (299 + 201) ∧ (485 + 15)

(490 + 112) ∧ (477 + 25) ∧ (333 + 201) ∧ (280 + 15)

1
CCA,

M∆x2 =

0
BB@

612 ∧ 270 ∧ 574 ∧ 467

500 ∧ 500 ∧ 500 ∧ 500

602 ∧ 502 ∧ 531 ∧ 295

1
CCA =

0
BB@

270

500

295

1
CCA.

In a similar way, the values that are different of 500
are equated to zero:

M∆x2 =


270

500
295


 →




0
500

0


 = y2.
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The recalling pattern is the output vector y2. We
could assume that input pattern x2 corresponds to
class 2.

Finally, we present x3 to max MAM:

M∆x3 =

0
BB@

500 245 373 452

388 475 299 485

490 477 333 280

1
CCA ∆

0
BBBB@

10

23

167

220

1
CCCCA

=

0
BB@

(500 + 10) ∧ (245 + 23) ∧ (373 + 167) ∧ (452 + 220)

(388 + 10) ∧ (475 + 23) ∧ (299 + 167) ∧ (485 + 220)

(490 + 10) ∧ (477 + 23) ∧ (333 + 167) ∧ (280 + 220)

1
CCA,

M∆x3 =

0
BB@

510 ∧ 268 ∧ 540 ∧ 672

348 ∧ 498 ∧ 466 ∧ 705

500 ∧ 500 ∧ 500 ∧ 500

1
CCA =

0
BB@

268

348

500

1
CCA.

We equate to zero the values that are not equal to
500, which gives

M∆x3 =




268

348

500


 →




0

0

500


 = y3.

Observing that the recalling vector corresponds to
the third output vector, this pattern could belong
to the third class because the value of 500 is in the
third element.

Then, we illustrate the building of the min MAM
with the following example. We take the latter
example as a base but change the output vectors
as follows:

x1 =




0

255

127

48


 → ȳ1 =



−500

0

0


,

x2 =




112

25

201

15


 → ȳ2 =


−

0

500

0


,

x3 =




10

23

167

220


 → ȳ3 =




0

0

−500


.

As before, we performed the associations of all the
pairs of patterns:

ȳ1 · (−x1)t =

0
BB@
−500

0

0

1
CCA · − `

0 255 127 48
´

=

0
B@
−500 − 0 −500 − 255 −500 − 127 −500 − 48

0 − 0 0 − 255 0 − 127 0 − 48

0 − 0 0 − 255 0 − 127 0 − 48

1
CA,

ȳ1 · (−x1)t =

0
B@
−500 −755 −627 −548

0 −255 −127 −48

0 −255 −127 −48

1
CA,

ȳ2 · ∆(−x2)t =

0
B@

0

−500

0

1
CA · − `

112 25 201 15
´

=

0
B@

0 − 112 0 − 25 0 − 201 0 − 15

−500 − 112 −500 − 25 −500 − 201 −500 − 15

0 − 112 0 − 25 0 − 201 0 − 15

1
CA,

ȳ2 · ∆(−x2)t =

0
B@
−112 −25 −201 −15

−612 −525 −701 −515

−112 −25 −201 −15

1
CA,

ȳ3 · (−x3)t =

0
B@

0

0

−500

1
CA · − `

10 23 167 220
´

=

0
B@

0 − 10 0 − 23 0 − 167 0 − 220

0 − 10 0 − 23 0 − 167 0 − 220

−500 − 10 −500 − 23 −500 − 167 −500 − 220

1
CA,

ȳ3 · (−x3)t =

0
B@

−10 −23 −167 −220

−10 −23 −167 −220

−510 −523 −667 −720

1
CA.

With these three associations, we build the min
MAM:

W =


−500 −755 −627 −548

0 −255 −127 −48
0 −255 −127 −48




∧
−112 −25 −201 −15
−612 −525 −701 −515
−112 −25 −201 −15




∧


−10 −23 −167 −220
−10 −23 −167 −220
−510 −523 −667 −720


,

W =



−500 −755 −627 −548
−612 −525 −701 −515
−510 −523 −667 −720


.

The next step is to perform the recalling phase by
presenting all the input patterns to the min MAM.
After recalling all the patterns, we equate to zero
the values that are different from −500.

W∇x1 =

0
BB@
−500 −755 −627 −548

−612 −525 −701 −515

−510 −523 −667 −720

1
CCA ∇

0
BBBB@

0

255

127

48

1
CCCCA

1950080-9

Fr
ac

ta
ls

 2
01

9.
27

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 1
87

.2
16

.2
38

.5
 o

n 
07

/2
9/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



July 12, 2019 8:52 0218-348X 1950080

M. E. Acevedo Mosqueda et al.

=

0
BB@

(−500 + 0) ∨ (−755 + 255) ∨ (−627 + 127) ∨ (−548 + 48)

(−612 + 0) ∨ (−525 + 255) ∨ (−701 + 127) ∨ (−515 + 48)

(−510 + 0) ∨ (−523 + 255) ∨ (−667 + 127) ∨ (−720 + 48)

1
CCA,

W∇x1 =

0
BB@
−500 ∨ (−500) ∨ (−500) ∨ (−500)

−612 ∨ (−270) ∨ (−574) ∨ (−467)

−510 ∨ (−268) ∨ (−540) ∨ (−672)

1
CCA =

0
BB@
−500

−270

−268

1
CCA,

W∇x
1

=

0
BB@
−500

−270

−268

1
CCA →

0
BB@
−500

0

0

1
CCA = ȳ

1
,

W∇x2 =

0
BB@
−500 −755 −627 −548

−612 −525 −701 −515

−510 −523 −667 −720

1
CCA ∇

0
BBBB@

112

25

201

15

1
CCCCA

=

0
BB@

(−500 + 112) ∨ (−755 + 25) ∨ (−627 + 201) ∨ (−548 + 15)

(−612 + 112) ∨ (−525 + 25) ∨ (−701 + 201) ∨ (−515 + 15)

(−510 + 112) ∨ (−523 + 25) ∨ (−667 + 201) ∨ (−720 + 15)

1
CCA,

W∇x2 =

0
BB@
−388 ∨ (−730) ∨ (−426) ∨ (−533)

−500 ∨ (−500) ∨ (−500) ∨ (−500)

−398 ∨ (−498) ∨ (−466) ∨ (−705)

1
CCA =

0
BB@
−388

−500

−398

1
CCA,

W∇x2 =

0
BB@
−388

−500

−398

1
CCA →

0
BB@

0

−500

0

1
CCA = ȳ2,

W∇x3 =

0
BB@
−500 −755 −627 −548

−612 −525 −701 −515

−510 −523 −667 −720

1
CCA ∇

0
BBBB@

10

23

167

220

1
CCCCA

=

0
BB@

(−500 + 10) ∨ (−755 + 23) ∨ (−627 + 167) ∨ (−548 + 220)

(−612 + 10) ∨ (−525 + 23) ∨ (−701 + 167) ∨ (−515 + 220)

(−510 + 10) ∨ (−523 + 23) ∨ (−667 + 167) ∨ (−720 + 220)

1
CCA,

W∇x3 =

0
BB@
−490 ∨ (−732) ∨ (−460) ∨ (−328)

−602 ∨ (−502) ∨ (−534) ∨ (−295)

−500 ∨ (−500) ∨ (−500) ∨ (−500)

1
CCA =

0
BB@
−328

−295

−500

1
CCA,

W ∇ x3 =

0
BB@
−328

−295

−500

1
CCA →

0
BB@

0

0

−500

1
CCA = ȳ3.

From the results, it can be observed that we cor-
rectly recalled the corresponding output patterns.
If we were applying our proposal, the input pattern
x1 would belong to the class 1, x2 would correspond

to class 2, and the third input pattern would belong
to class 3.

3. RESULTS

We used an HP-Omen 17-w00la laptop with a
processor Intel i7 quad core, and the system
was implemented with the programming language
Visual Studio 2013 C#.

The first experiment consisted in training both
memories, max and min, with 53 images. Then, we
presented all images to the memories which cor-
rectly classified all shoeprints. Therefore, the effec-
tiveness was 100%, consequently, the memory did
not have a forgetting factor, meaning that our mem-
ory recalled all the patterns with which it was
trained.

The second experiment consisted in applying
additive, subtractive, and mixed noises to the
images. The goal of applying noise was to simulate
shoe wear or spots in the shoe sole.

We started with a 20% of additive and subtrac-
tive noises to all images and presented the max and
min MAMs. Then we applied 50%, 90%, 95%, 98%,
and 99% of both types of noise: additive and sub-
tractive. Figure 4 shows the different levels of sub-
tractive noise applied to an Adidas shoeprint.

The process for adding the noise was as follows.
We randomly selected I number of coordinates of
the images by the means of the follwing equation:

I =
w ∗ h ∗ noise

100
, (10)

where w is the image weight, h is the image height
and noise is the percentage of the noise to add.

If we add additive noise, we placed a value of 255
in the selected coordinate. For subtractive noise, we
placed a 0. In the case of mixed noise, the value (0
or 255) is randomly selected.

In Table 1, we show the results of effectiveness of
classification from the experiment in Fig. 4.

Fig. 4 From left to right: the original image, image with 20%, 50%, 90%, 95%, 98%, and 99% of subtractive noise.
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Table 1 Results of Effectiveness of
Classification When Different Levels of
Subtractive Noise Were Applied to 53
Images.

Subtractive Effectiveness of
Noise (%) Classification (%)

max MAM min MAM

20 0 100
50 0 100
90 0 100
95 0 100
98 0 100
99 0 0

From Table 1, as was expected, we observe that
max memory cannot deal with subtractive noise.
On the other hand, min MAM correctly recalled or
classified all the noisy images even when they had
98% noise.

In Fig. 5, an example of noisy images with addi-
tive noise is shown. The noise levels are 20%, 50%,
90%, 95%, 98%, and 99%.

Table 2 shows the respective effectiveness when
the different levels of additive noise were applied.

Max MAM recalled the 53 images even with 98%
additive noise while min MAM had zero effective-
ness with all levels of noise.

Some papers present the results from recalling
partial shoeprints as toe, heel, left-half, and right-
half. The above results confirm that our proposal is
able to recognize partial shoeprints too because a
partial pattern represents additive noise.

In Fig. 6, we show the original Adidas shoeprint
and the noisy version of this image. It was added
with 10%, 20%, 50% 80%, 90%, and 95% of mixed
noise.

We know that max and min MAM can deal with
additive and subtractive noises, respectively, but
none can deal with mixed noise. We tried to solve
this problem by adding subtractive and additive

Table 2 Results of Effectiveness of Classification
When Different Levels of Additive Noise Were Applied
to 53 Images.

Additive Noise (%) Effectiveness of
Classification (%)

max MAM min MAM

20 100 0
50 100 0
90 100 0
95 100 0
98 100 0
99 0 0

Fig. 6 On the left, we can observe the original image and
on the right, we show the noisy image with mixed noise.

noises to those images corrupted with mixed noise.
The percentage of adding noise (subtractive and
additive) was greater than the percentage of mixed
noise. For example, a corrupted image with 10%
mixed noise was added with 30% subtractive and
additive noises. The goal of this action is to coun-
teract the effect of the mixed noise and to just have
subtractive noise or additive noises. In this way, an
MAM can deal with that noisy image.

The results are shown in Tables 3 and 4.
Both Tables 3 and 4 show that when the added

noise (additive or subtractive) is greater than the
mixed noise, the percentage of classification is

Fig. 5 From left to right: the original image, image with 20%, 50%, 90%, 95%, 98%, and 99% of additive noise.
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Table 3 Results of Effectiveness of Classification
When Different Levels of Mixed Noise Were Applied
to 53 Images and the Images Were Corrupted with
Additive Noise.

Mixed Additive Effectiveness of
Noise (%) Noise (%) Classification (%)

min MAM max MAM

10 30 0 72
20 40 0 71
50 70 0 72
80 80 0 0
90 90 0 0
95 95 0 1

Table 4 Results of Effectiveness of Classification
When Different Levels of Mixed Noise Were Applied
to 53 Images and the Images Were Corrupted with
Subtractive Noise.

Mixed Subtractive Effectiveness of
Noise (%) Noise (%) Classification (%)

min MAM max MAM

10 30 70 0
20 40 73 0
50 70 74 0
80 80 1 0
90 90 1 0
95 95 0 0

around 70%, but when they are equal, none of the
memories can recognize the patterns.

In Table 5, we show a comparison among other
algorithms. We must highlight that these works did

Table 5 Comparisons Among Algorithms Working with Partial Print Images: Toe, Heel, Left-Half and
Right-Half.

Method Num Images Partial Prints Type of Noise % of Recognition

Gabor and Radon
transforms

200 subjects with 3
different full
prints and 4
partial prints

Toe and heel None 100 at rank 2 for heel
and at rank 3 for
toe

SIFT 430 Toe, heel, left-half,
and right-half

None 98 rank 2 for heel and
toe and 87 for right
and left-halves

PCA–SIFT — Toe, heel, left-half,
and right-half

None 95 for toe, 84 for heel,
92 for left-half, and
94 for right-half

MAM 53 Toe, heel, left-half,
and right-half

Additive and subtractive 100 for all the partial
prints when the
images are
corrupted until 98%

not use the same dataset. Some of them report their
results based on the cumulative match score which
is the probability of a match estimated by deter-
mining the proportion of times during trials of the
system a database pattern appeared in the first n%
of the sorted patterns and is from the same pattern
category as the reference image. In other words,
accuracy of a matching system could be taken to
mean that for a given query image, the most simi-
lar image in the database is retrieved as the top
ranking (rank 1).

From Table 5, we can observe that one advantage
of our method is that it can deal with big amounts
of additive and subtractive noises, but the perfor-
mance is very poor as the images are corrupted with
mixed noise.

4. DISCUSSION

We applied MAMs (max and min) to recognize the
shoeprints. Both memories could recall 53 images
that were trained. We simulated the wear and tear
of shoes by adding additive, subtractive, and mixed
noises.

When we added additive noise, max MAM recog-
nized all images even when the level of noise was of
98%. On the other hand, min MAM handled high
levels of subtractive noise. The maximum level of
subtractive noise was 98%.

Clearly, we observed that none of the memories
could recall any of the images when more than 98%
of additive or subtractive noise was added.

In the case of mixed noise, the memories recog-
nized the images with a 70% of effectiveness when
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the percentage of noise (additive and subtractive)
is greater than mixed noise.

Both memories, min and max, showed to be an
adequate tool to recognize shoeprints. In the partic-
ular case, when the images are corrupted with sub-
tractive noise, we assure that our proposal can recall
partial images as toe, heel, left-half, and right-half
because they represent special cases of subtractive
noise.

It should be highlighted that if MAM memories
could recognize the original images they surely will
recognize noisy versions added with even 98% of
additive and subtractive noises.
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