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Abstract

In this work, we present a robotic arm assisted by a visual system to decide whether an object
with different colors, parallel flat surfaces and other types of surfaces would be subject to
be manipulated without a drop risk. This robotic arm is assisted with sensors such as tem-
perature, humidity, artificial vision, etc. and monitored with a Blockchain Internet of Things
(BIoT) expert system assistance, which is shared and accessed by the internet by the users.
A prototype for industrial purpose is launched to start providing data for training the expert
system, achieving in this way an expert system with machine learning. The variations derived
from the identification of the reference points and the characteristics of the robotic arm are a
limiting factor of the system, however, it was possible to correctly locate the robotic arm in
the workspace to take the object and manipulate it using machine learning based on a BIoT
expert system.
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1. INTRODUCTION

Computer vision seeks to help machines to have
the ability to perceive and understand an image,
to imitate the process that humans perform with
their eyes but the integration with blockchain1–10

and the internet of things (IoT)11–13 now is a need.
One of the applications of these systems is recog-
nition, which can be used in areas such as indus-
try, medicine and robotics.14 The visual control of
robots refers to the use of visual information to
control the position and/or orientation of a robotic
arm to perform a task. Therefore, it is necessary to
extract information from an image, which is used
to generate the movement of the robotic arm, using
kinematic models and control sequences. Although
there are works under the theme of visual control
of robots, these developments involve the use of
industrial-type robots, which coupled with the con-
fidentiality of information, hinders the task of repro-
ducing these systems for educational purposes.

Concerning the recognition of objects, a prob-
lem that regularly occurs is the number of sensors
needed to acquire useful information. Being there,
where the use of image sensors represents an alter-
native, allowing to obtain more information from
the environment looking for more efficient recog-
nition tasks. To do this, there are different types
of devices used in visual control15 where web cam-
eras16,17 are used, which uses stereoscopic vision. In
this work, the Kinect device is used, which provides
information in 2D and 3D through its color camera,
an infrared sensor, and a depth sensor.

The visual control of robots is defined as the use
of visual information from one or more video cam-
eras, whether fixed or mobile, to control the position
and/or orientation of the end effector of a robot con-
cerning an object or a set of visual characteristics of
this, depending on the task to be carried out.18–22

The visual control of robots is divided into two
main categories: open-loop control also called look-
then-move, and visual servo-visual control servo-
ing23 where the vision system provides inputs to
a feedback controller to internally stabilize the
robot.24 In the case of open-loop systems, the
extraction of image information and the control of
the robot are two separate tasks, when first per-
forming the processing and interpretation of the
images followed by the generation of a control
sequence. In this type of visual control, the robot
can execute the task by performing movements that

assume that the environment remains static after
the robot has begun to move.

The open-loop control has been approached from
different methods. It has developed systems to carry
out operations of recognition and manipulation of
flexible objects that change their shape during the
execution of an action, and where the planning of
fixed trajectories often is not applicable.25 The pro-
totype obtains the 3D information of the object and
in the background captures through the Kinect the
deformation that presents the object when being
taken by a Universal Robots Arm UR5 of six
degrees of freedom. Also, systems have been devel-
oped to identify and collect PVC-type connectors
with a Cosero26 robot. The detection of objects in
the scene is done by coinciding probabilistic graph-
ics, while for the identification of the geometry of
the objects (planes, cylinders, and spheres), the
Schnabel algorithm was used, however, this algo-
rithm is found to require artificial intelligence to
scale to an industrial massive adoption such that
this specific development can be used for general
purpose since an expert system27–32 using machine
learning with deep belief networks as the inference
engine33,34 can be learning each case of use as long
as it is a manipulation use arm robot case; the
expert system will be learning the manipulation
of very different kinds of geometrical objects with
very different types of surfaces but also an IoT plat-
form is required to scale to an industrial level since
an arm robot contains a bunch of sensors working
together to get the manipulation such that data
from this sensors need to be stored in a data base
conforming a big data on the cloud from the web
to feed the machine learning process, a user may be
concern about their data process but they are pro-
tected by his blockchain account and only general
or common data are shared online. There is also
research about the interactive transfer of objects
between a human worker and an industrial robot is
addressed, using two Kinect to know the location
of the object and the human and a planning mod-
ule that analyzes the current conditions of approach
and grip of the robot. In application to the meat
industry that has developed the processes of selec-
tion and location of pieces of beef, that is a common
task in slaughterhouses.35,36

However, robotic arms with artificial vision appli-
cations have a big challenge; the variations derived
from the identification of the reference points and
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Robotic Arm with BIoT Machine Learning System

the characteristics of the robotic arm are a limit-
ing factor of the system, therefore the main contri-
bution of this research is to make possible to cor-
rectly locate the robotic arm in the workspace to
take the object and manipulate it using machine
learning based on a blockchain internet of things
(BIoT) expert system. The expert system is capa-
ble to learn to identify the reference points and the
specific characteristics of the robotic arm quickly
to avoid a big inconvenience with the robotic arm
user, this is because the expert system is not only
assisted by a deep learning (DL) inference module
but also because this inference module can learn
faster as the data provided by the sensors is grow-
ing as long as it is accumulated in an internet
storage (database) with the concept of the IoT. This
database is safety thanks to the blockchain devel-
oped for this research.

2. METHODOLOGY

Figure 1, the experimental setup for the visual
control system is presented. The image process-
ing and interpretation, post-processing, and robot
motion planning stages have been made in a
high-performance computer. In Fig. 2, the general
scheme is shown. The processing and interpretation
of the image are done using the resources of the
OpenCV free library, obtaining from this stage the
lines in 2D candidates to represent edges (common
side to two faces) of flat parallel surfaces of the
objects (rectangular prisms). Subsequently, corre-
spondence with the 3D data and post-processing is
made to define the edges of the flat parallel sur-
faces and on them identify reference points, which
through the kinematic model and a cubic polyno-
mial trajectory are transformed into a movement
specification of the Smart Robotic Arm of four

Fig. 1 Experimental setup for visual control system.

Fig. 2 Visual control for the general scheme.

degrees of freedom. In the following sections, the
indicated modules that make up the visual control
system proposed are broken down.

3. IMAGE PROCESSING AND

INTERPRETATION

This first stage consists in the processing and inter-
pretation of the image data obtained through the
Kinect. Figure 3 shows the modules that make up
the phases of this stage. The 2D image is gener-
ated from the colors associated with the 3D point
cloud obtained through the libraries provided by
the Kinect SDK. The processing consists of making
a crop of the original image to reduce the amount
of data to be processed, limiting itself to cover the
work area of the manipulator. Then the median fil-
ter is used to eliminate noise in the image, and
a dilation to reduce the size of the objects and
obtain a better correspondence with the depth data.
Finally, a Canny filter is applied that allows the
detection of edges using two appropriate thresh-
olds (upper and lower) to identify the edges of the
objects, under the light conditions in which the tests
are carried out.

In the interpretation of the image, the Hough
probabilistic transform is used by the Hough Lines
P function in OpenCV, which allows detecting lines
in a 2D image under certain parameters. Once all
the lines in the image have been detected, the pixel
value of the initial and final positions of the same
in 2D is obtained and correspondence is made with
the point cloud to obtain the 3D coordinates. Pre-
viously, the 3D data in the reference system of the
Kinect, are transformed into the robotic arm sys-
tem. Therefore, a relationship between the coor-
dinate systems is used, which is shown in Fig. 4,
where the robot-Kinect transformation is defined
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Fig. 3 Image processing and recognition procedure.

Fig. 4 Coordinate transformation.

as a translation in x, y and z, and rotation over x.
Thus, using (1), it is possible to calculate each ref-
erence point in the object (px, py, pz) with respect
to the robot’s coordinate system. Being (kx, ky, kz)
the point on the object respect to the Kinect coor-
dinate system, and where σ = 137◦, dx = 9 mm,
dy = 1225 mm, and dz = 800 mm, for the real test
scenario.
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. (1)

3.1. Post-Processing

An address vector is associated with each detected
line (from its starting and ending points), as shown
in Fig. 5a. The angle between the vectors of line
pairs is obtained from the definition of the point
product. If the angle between the vectors is equal
to or smaller than ε1, parallel lines are considered.
The magnitudes of pairs of vectors are compared
and if their absolute difference is less than ε2, and
separation distance ds is close to the opening size
D of the clamp (D− ε3 ≤ D ≤ D + ε4) they will be

(a) Direction line vectors

(b) Fixing and reference points

Fig. 5 Process for line discrimination.

considered as pairs of lines Parallel valid. This crite-
rion is valid under the slogan that the objects used
have the form of rectangular prisms, which implies
that their parallel edges are approximately the same
size. Once the line discrimination has been done, the
midpoint of each line joining two attachment points
of the object is obtained (Fig. 5b).

3.2. Robot Motion Planning

The purpose of this module is to transform the ref-
erence points into joint values for the motors in the
robot, which generate a “soft” movement. Figure 6
shows the modules that make up the planning of
the movement.
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Fig. 6 Movement plan.

Fig. 7 Isometric view of the restricted workspace of the
Smart Robotic Arm.

To define the movement of the robot, it is nec-
essary to establish the direct and inverse kine-
matic models. The Denavit–Hantenberg conven-
tion was used, while the inverse model related
to the position was obtained using a geometrical
approach.37,38,40,41 Figure 7 shows the workspace
that is obtained from the direct kinematic model
of the Smart Robotic Arm manipulator, and
that allowed to estimate the position that the
objects must keep in order to be taken by the
robot.

Once the angles are obtained for each degree of
freedom through the inverse kinematics, it is nec-
essary to adjust the values due to how the motors
are anchored to each one of the joints of the robot.
Finally, velocity profiles were implemented through
a cubic polynomial trajectory (2) for the angu-
lar movement of the motors, which allowed for a
smooth movement when moving an object from an
initial position to an end position, without releasing
it. In order to do the description of the cubic poly-
nomial trajectory, it is considered that the robot
starts from the idle position.

q(t) = q0 +
3(qf − q0)

t2f
t2 −

2(qf − q0)

t3f
t3. (2)

3.3. Motion Stability Study

Defining M = m × m.
Being M = MT M = MT a symmetric matrix

and if M = −MT is a non-symmetric matrix, the
square matrix is equal to both matrix sum:

M =
M + MT

2
+

M − MT

2
. (3)

Considering that a quadratic function XT Mx
associated with a non-symmetric matrix is always
zero.

XT Mx = −XT MT x = (−XT MT X)T

= −XT Mx = Ø. (4)

Then, XT Mx function with symmetric M is
equal to a quadratic function as long as a quadratic
matrix (m × m) is defined as positive if

∀X �= Ø → XT Mx > Ø. (5)

The matrix M is defined as positive only if the
XT Mx function is defined as positive.

Therefore, a function Ẋ = Ax analyzed with a
Lyapunov function V (X) = XT Mx > Ø deriving
the Lyapunov function we have the following:

Ẏ (X) = ẊT Mx + XT Mẋ

= XT AT Mx + XT MAx, (6)

Ẏ (X) = XT AT M + MAx < Ø. (7)

AT M + MA → M symmetric.
If the M symmetric matrix are negative, therefore

the following inequality:

∃ M = MT > Ø : AT M + MA < Ø. (8)

In order to solve this, it is possible to transform
it to a Lyapunov equation:

∃ M = MT > Ø,

N = NT > Ø : AT M + MA = −N, (9)

where N is a symmetric matrix defined as positive
with N = I (identity).

Let the model considered in state-space have the
form (1). In agreement to (1) and, the recursive
form is

Yt = GY t + HV t, (10)

where G,H are matrices bounded with G ∈ R and,
H = f(A,C,B,D), V t ∈ N .
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3.4. Expert System With Machine

Learning Used to Identify

Parallel Lines on a BIoT

System

Once the lines in the image are recognized, it is nec-
essary to determine which are parallel by the post-
processing. In this particular case, the experimen-
tal parameters of the post-processing are: ε1 = 5◦,
ε2 = 30 mm, ε3 = 20 mm, and ε4 = 10 mm. In the
case of ε2, its value is due to the effect caused by the
expansion and application operations of the Hough
transform, which caused an unreal increase in the
difference in magnitude between parallel lines.

Finally, a test was performed rotating the cube
on its axis, to determine the number of parallel lines
that was observed in the 2D image and those that
the system determined to be parallel from the pro-
cessing of the 3D data.

Table 1 a maximum of 33.33% recognition of par-
allel lines was observed when the object is rotated
at 0◦, 40◦ and 120◦, recognizing two pairs of parallel
lines of the six pairs of parallel lines visible in the
image. The values where the percentage was zero
are due to the error of correspondence between 2D
and 3D data (Fig. 8).

In the case of velocity profiles, the times for the
movement trajectory (tf ) were defined under two
criteria: the maximum amplitude of angular move-
ment (qf − q0), and the minimization of “abrupt”
movements.

In the case of this last criterion, no scheme is con-
sidered to counteract the effects of robot dynamics,
so these “abrupt” movements will remain present,
but on a small scale. For all cases, the speed in
the engines is below the maximum value established
by the manufacturer (113.5 rpm). The times for the

Table 1 Rotations.

Rotation Image Information System Information Recognition Percentage

Number of Parallel Lines Number of Parallel Lines Lines Parallel Lines
Lines Pairs Lines Pairs Pairs

0◦ 7 3 4 1 42.85% 33.33%
20◦ 9 6 5 1 66.66% 16.66%
40◦ 9 6 7 2 66.66% 33.33%
60◦ 9 6 7 1 66.66% 16.66%
80◦ 7 3 4 0 42.85% 0.00%
100◦ 9 6 6 1 66.66% 16.66%
120◦ 9 6 6 2 66.66% 33.33%
140◦ 9 6 5 1 55.55% 16.66
160◦ 7 3 4 0 57.14% 0.00%

Fig. 8 Error in the correspondence between 2D and 3D
data.

Fig. 9 A robotic arm reached in space.

trajectories of movement of the first three degrees
of freedom were 5, 8 and 4 s, respectively, regard-
ing accuracy in repeatability, tests were performed
to determine how close the end of the robotic arm
reached a point in space, without considering the
existence of the end effector (clamp) (Fig. 9).
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Fig. 10 Representation of the resolution of the robotic arm.

In Fig. 10, the repeatability of the robotic42 arm
is presented as a sphere that encloses the set of posi-
tions to which the arm can return given a target
position and certain test conditions, where the max-
imum distance to the target from a measured point
is ±10.6 mm.

3.5. Expert System with Machine

Learning Results on BIoT

The development of the expert system has the one-
terabyte database, a 7th generation Intel CORE I7
processor with a GTX 1070 GPU. A precision of
97% was obtained in the semantic search engine.
Table 2 shows the comparative results using three
algorithms: SHA256 and SCRYPT.

Table 2 shows the dynamic performance of the
searches on the IoT platform, where L represents
the number of entries, N represents the number of
hidden nodes per layer, M represents the size of the

Table 2 Blockchain Algorithms Comparative
Performance (m).

Algorithm Parameters Training Testing
(seconds) (seconds)

(SHA256) L = 843
N = 10
M = 1
Terabyte
D = 7

25 39

(SCRYPT) L = 843
N = 10
M = 1
Terabyte
D = 7

17 21

Table 3 Hyperparameter of a Deep Network Range.

Units Fine
per Layers Pre-Training Adjustment

Layer rate Rate

Minimum 2 2 0.03 0.3
Maximum 7 4 0.2 0.5

Table 4 Comparative Table for ELM, MLP and DL.

ELM MLP DL

COST 13 21 6.5

(×10−3)
DL Binary Continuous Continuous Continuous

(0, 1) (0,∞) (0, 1) (−6, 6)
COST 7 21 5.5 7.3

(×10−3)

database and; D the number of depth layers (DL
dimension).

The parameters used in the DL net for this study
are shown in Table 3.

The deep belief network helps to minimize the
dimensionality effect problem in the deep architec-
ture models. It is observed that using only two
identification layers, we can have a minimal test-
ing error, nevertheless, on the medium region of the
surface, it is noticed that when increasing the num-
ber of layers and units, we can get to a new mag-
nitude local minimal from the studied error (ideal
deep dimension).

Table 4 shows a comparative performance
between three different neural network structures:
extreme learning machine (ELM), Multilayer per-
ceptron (MLP) and DL.

4. DISCUSSION

By using the Canny filter and the Hough transform,
it was observed that these methods can be more
efficient when using images in which larger objects
exist, however, the limitations of the arm did not
allow the use of larger objects.

In the post-processing proposal, the maximum
angle between vectors (5◦) allows the adequate iden-
tification of parallel lines. The definition of a refer-
ence point allowed relating the position of the object
in space with that of the robot, through the inverse
kinematics responsible for generating the movement
specification of the robot. As a result of identifying
two pairs of parallel lines (perpendicular to each
other) on the same face of the objects, the choice
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of any of the pairs will allow the movement of the
object, since the reference point is the same for both
pairs of lines.

Regarding the experimental robotic arm used, it
should be noted that when performing the clamp-
ing tests, it was observed that the weight of the
objects that can be moved is 140 grams, which is less
than the specification of 1 kg of load for the robot,
this obeys mainly to how the objects are taken.
On the implementation of a speed profile,43–45 this
favored the transfer of objects, allowing to reach an
objective position without falling during the jour-
ney, however, there are still minor abrupt move-
ments due to the lack of a scheme to counteract
the dynamic effects of movement itself.46–51

It should be noted that the variations (measured
as absolute mean error) presented in the calculated
reference points concerning the real values, is a
product of both the location of the Kinect depth
sensor and the implicit coordinate transformation,
as well as of the processing operations and inter-
pretation of the image.52–54 However, despite these
variations and the limitations of the robotic arm
itself, the system allowed the robotic arm to be cor-
rectly located to take and move the object.

5. CONCLUSIONS

In this paper, we present the development of a capa-
ble system of identifying parallel edges in simple
objects (rectangular prisms), to manipulate them
using an experimental robotic arm. However, when
considering the 2D image as the primary source of
information, the system is susceptible to changes in
luminosity in the environment, which impacts the
33.33% recognition of parallel lines obtained.

According to Table 4, DL is really the best choice
comparing to ELM and MLP with the best cost.

Since this is a preliminary work, several future
works are proposed with assistance of the knowl-
edge society concepts,55,56 such that they can help
us to better understand the impact and usage of
this technology for the society, under the princi-
ple that a big advance in technology makes society
transformation though a knowledge spread easily,
a good approach of an enhancement on this tech-
nology could be, for example, the use of another
Kinect sensor that is located in a position above
the robotic arm, which would facilitate the recog-
nition of the closest faces or objects to the robotic
arm and would grant greater versatility to manipu-
lation.57–60
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