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Abstract

This paper describes the parameter estimation modeling concerning a domotic designer bot
system with internet of things (IoT) assistance using the probabilistic operator based on the
stochastic parameter estimation through the moments and the recursive conditions. Light,
CCTV, presence, and temperature are IoT data monitored, shared, and accessed by the inter-
net for a smart office designer performance that evolves based on historical web data. The
relationship established by Wiener between covariance and variance found the parameter time
evolution by observing through the time. The development is viewed in the visible results
between non-recursive and recursive mathematical structures. In both cases, the convergence
rate is based on probabilistic estimation, the functional error presents a high convergence rate
which is viewed as an effect of the function of a density function. The estimate considered
a non-invasive perspective, and it helps in different applications such as health diagnosis in
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humans and animals with internal problems, or systems which are unknown for internal evolu-
tion such as for IoT model adoption. Therefore, our objective is to propose a black box, inner
approximation through the parameter estimation without a no invasive stochastic method based
in Wiener approximation.

Keywords : Pattern Recognition; IoT (Internet of Things); Parameter Estimation; Identification
of Variables; Recursive Filters.

1. INTRODUCTION

Estimating parameters allows us to see the stabil-
ity of the fractal itself and define its characteristics
unlike what we have so far seen of fractals. Besides,
estimating the parameters of a system allows us
to get an intrinsic view of the system, something
that is not obtained in conventional fractal mod-
eling which only considers the dimension and its
structure. Some studies have been done for inter-
net of things (IoT) domotic system stability using
Lyapunov stability. However, in this case, the sta-
bility study is done with an estimation parameter
space considering the IoT domotic system as a frac-
tal behavior system. The main contribution of this
paper is to find a mathematical model to facilitate
the stability study for IoT domotic systems consid-
ering these systems as a fractal behavior. This study
was chosen in the IoT systems due to a near boom
on IoT after the 5G internet mass adoption.

The stochastic recursive filter is possible now due
to mathematical and computational advances.1,2

The scientific advances in the two last centuries
put solid, durable bases into senses, deterministic
and stochastic systems.

With these premises, it gives the tools required
for probabilistic recursive stochastic parameter esti-
mation applied to the unknown internal evolution
system.

Therefore, the first concept used was an internal
product of the two stochastic variables developed by
the German mathematician, David Hilbert (1862–
1943). The second was of the German mathemati-
cian, Johann Carl Frederic Gauss (1777–1855), and
his Gaussian probabilistic distribution function or
normal function.

Both concepts are used for determining the
moment second of a stochastic system, and a third
concept was used for a Martingales concept intro-
duced by France, Paul Levy (1886–1971), to per-
form the graphical evaluation.

The Maximum Entropy method is applied, which
is a system based on LaGrange multipliers to
determine an appropriate probabilistic distribution

to choose the representative model of the black-
box process, in which there is previous experimental
information of its input/output variables.

2. RECURSIVE BLACK-BOX
MODEL

The model’ purpose is to determine the stochastic
parameter estimation in two steps: first, the error
functions called co-variance Pk, Qk, and second,3

their recursive forms.4,5 These errors are obtained
using the Gaussian distribution density probabilis-
tic function.6

2.1. Characteristics of the Black
Box

The study process is a black-box model with a
single-input and single-output (SISO) with the
following features: linear and time-invariant with
adhered noise to the internal state and output. It
can be seen in Eqs. (1) and (2) (ARMA model).7–9

The Autoregressive-Moving Average (ARMA)
model is a well-researched forecasting tool that pro-
vides good quality short-term forecasts on station-
ary, non-seasonal time-series.

x̃k+1 = ax̃k + bw̃k, (1)

ỹk = cx̃k + dṽk, (2)

where xkǫR
n, ykǫR

p are the internal and output
variables and wkǫR

l, vkǫR
p are noises with mean

value equal to zero being stationary with a white
noise process with correlation.

2.2. Recursive Process

The space state Eqs. (1) and (2) help us to build
the ARMA model in a recursive form,10,11 where
the noise is now a combination thereof and added
to the output system, see the following equations:

ŷk = ŷk−1 + V̂ mk, (3)

V̂ mk = −adṽk−1 + dw̃k−1 + bw̃k−1. (4)
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2.3. Internal Product of Hilbert

This method consists of multiplying yk−1 with the
recursive response, see the following equation:

ŷkŷk−1 = aŷ2
k−1 + V̂ mkŷk−1. (5)

2.4. Stochastic Estimation

The stochastic operators used to perform the
parameter estimation ã are mean value, variance,
and covariance.12–19

Applying the mathematical expectation to
Eq. (5) and estimate the parameter a, we have the
following equations:

E{ŷkŷk−1} = aE{ŷ2
k−1} + E{V̂ mkŷk−1}, (6)

E{ŷkŷk−1} = aE{ŷ2
k−1} − adE{ṽk−1ŷk−1}, (7)

ãk =
E{ŷkŷk−1}

E{ŷ2
k−1} − dE{ṽk−1ŷk−1}

. (8)

2.5. Discrete Probabilistic Mean
Value

The discrete probabilistic mean value applied to a
discrete random variable20,21 ỹi is shown in the fol-
lowing equation:

E{ŷi} =

k
∑

i=1

ŷiPY (Y ≤ ŷi), (9)

where Y is a random variable sequence, and PY is
the probabilistic dummy function of yi.

2.6. Accumulated Probabilistic
Density Nonlinear Function

Nonlinear systems such as seismic and DNA
genome alignment,22,23 and also recognition and
machine learning systems,24–28 but in this case, IoT
systems29 observe unknown internal evolution pro-
cesses. These types of systems can define the accu-
mulated probabilistic density function dFY (ŷi)/dŷi

or distribution function Fyi
(yi) and has the follow-

ing form of the equations:

FY (ŷi) = PY (Y ≤ ŷi), (10)

PY (ỹi) =
dFY (ŷi)

dŷi

. (11)

Otherwise, the density function of the probability
of the random variable Y is the derivative of the
probability density accumulated function.

If Eq. (11) expresses the finite differences

PY (t)|Y (t−ε),
(ŷi) ∼=

F (ŷi) − F (ŷi−ε)

ε
, (12)

where ǫ is equal to the digital interval k samples
and of one value. Therefore, Eq. (12) comes to be
the following equation:

PY (ŷi) ∼= F (ŷi) − F (ŷi−1). (13)

According to the definition in Eq. (10), it has the
following equation:

PY (ŷi) ∼= P (ŷi) − P (ŷi−1). (14)

2.7. Probability Density Nonlinear
Function (pdf)

A random variable Y has a Gaussian or a dummy
variable ỹi expressed in the following equation:

PY (ŷi) =
1

σY

√
2π

e

(

− (ŷi−µY )2

2σ2
Y

)

. (15)

2.8. Maximum Entropy

It gives us the most appropriate distribution to the
model described in Eqs. (1) and (2), particularly
the one with the highest entropy among all those
that satisfy the constraints of our prior black-box
system knowledge. Usually, these constraints are
equations regarding moments of the desired distri-
butions. Besides, the system has the most signif-
icant remaining uncertainty, and by observing its
bias, do not we add any correlated noise into the
estimation.

Applying the maximum entropy description, con-
sidering that it has two signals (the output sys-
tem signal and the identification signal), we seek
to accomplish Eq. (16).

δ

[

−k

y
∑

i=1

PY (yi) ln(PY (yi)) − α

y
∑

i=1

PY (ŷi)

]

∼= 0.

(16)

Despite the innovation properties that the out-
put system signal had, and based on maximum
entropy property, probabilities between identifica-
tion and reference converge in almost all points, i.e.
PY (ŷi) ∼ P Y (yi), which allows us to select the vari-
ances and mean values as a part of the estimation
and identification with respect random variable Y .
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Using the Taylor series, the exponential function
expressed by a convergent sequence is as follows:

e−a =
∞
∑

n=1

(−1)an

n!
∼= 1 − a. (17)

Then exponential function based on the previous
result reduces to a difference as in the following
equation:

e−a − e−b = b − a. (18)

The probabilistic density function of the random
variable Y is

PY (ŷi) =
1√

8πσ3
Y

(y2
i − y2

i−1 − 2µY (yi − yi−1)).

(19)

The random variable second-order moment in dis-
crete has the following form:

E{ŷ2
i } =

k
∑

i=1

y2
i PY (Y ≤ yi). (20)

The correlation function allows using the second
probability moment, but in the expanded descrip-
tion as

E{ŷkŷk−1} =

k
∑

i=1

(ykyk−1)P Y (Y ≤ yi). (21)

By substituting the result of Eq. (19) into
Eq. (21) we have the covariance error function Pk

in the following equation:

Pk = E{ŷkŷk−1} =
1√

8πσ3
Y

k
∑

i=1

(yiyi−1)(y
2
i − y2

i−1

− 2µY (yi − yi−1)). (22)

By performing operations we obtain the digi-
tal sequence of covariance error in the following
equation:

Pk =
1√

8πσ3
Y

(ŷ3
kŷk−1 − ŷkŷ

3
k−1

− 2µ(ŷ2
kŷk−1 − ŷkŷ

2
k−1) + Pk−1. (23)

In the same sense, the covariance error using the
variance and the innovation moment has the follow-
ing form of equation:

Qk = E{ŷ2
k−1} − dE{ṽk−1ŷk−1}. (24)

In this case, there are two moments, one square of
the output variable and the other, to the same out-
put variable and the output noise as in the following

equation:

QK =
1√

8πσ3
Y

k
∑

i=1

(ŷ2
i−1 − dṽi−1ŷi−1

)(ŷ2
i − ŷ2

i−1

− 2µY (ŷi − ŷi−1)). (25)

We develop it as a sequence that is dependent on
sampling: the output variable, output noise, and
the parameters of the Gaussian probability density
function σ and µ. See the following equation:

QK =
1√

8πσ3
Y

(ŷ2
k−1ŷ

2
k − ŷ4

k−1 − 2µY (ŷkŷ
2
k−1 − ŷ3

k−1)

− dṽk−1ŷk−1ŷ
2
k + dṽk−1ŷk−1ŷ

3
k

+ 2µY (d̃vk−1ŷk−1ŷk − dṽk−1ŷ
2
k−1)) + Qk−1).

(26)

With the two sequences Pk and Qk, the Wiener
standard description in the recursive form concern-
ing ˆ̃a has the following equation:

ˆ̃a =

1√
8πσ3

Y

⎛

⎜

⎜

⎜

⎜

⎜

⎝

ŷ3
kŷk−1−

ŷkŷ
3
k−1−

2µ(ŷ2
kŷk−1−

ŷkŷ
2
k−1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

+ Pk−1

Qk

. (27)

In order to enable the equation to obtain the
covariance function Qk and not of Pk, we use a delay
on the comparison and proceed to substitute Pk−1

by Qk−1ak−1, see Eq. (28). We finish with the new
discrete estimation algorithm of stochastic parame-
ters applied to a black box.

Equation (27), based on covariance Qk and
not Pk, delays and proceeds to replace Pk−1 by
Qk−1ak−1. See Eq. (28) and finishing with a new
stochastic discrete parameter algorithm applied to
a black box.

âk =

(

Qk−1

Qk

)

âk−1 +

(

1√
8πσ3

Y

)

ρk. (28)

3. FUNCTIONAL ERROR

Mathematical expressions commonly used deter-
mine the non-recursive functional error considering
the discrete probabilistic mathematical expectation
in Eq. (29), and recursive form for stable conditions
in (30).
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Non-recursive

ẽk = ak − ãk, (29)

J̃k =

(

1

k

) n
∑

i=1

ẽ2
i . (30)

Recursive
Based on (29) with stationary conditions through
time evolution error, we have the following
equation:

Ĵk =

(

1

k

)

(ê2
k + (k − 1)Ĵk−1). (31)

In the interpretation of the IoT domotic designer
models, the Hough probabilistic transform is used
by the Hough Lines P function.

4. EXPERIMENTAL RESULTS

4.1. Parameters and Initial
Conditions

In what follows, we give some data that are carried
out to make the simulation for domotic IoT expert
systems.29–31

a=0.9; % PROCESS

b=1.3; % PROCESS

c=1.5; % PROCESS

d=0.3; % PROCESS

%-----------------------------------------

SIGMA=1.9.0; % (VARIANCE)

MU=11.2; % (MEAN VALUE)

%-----------------------------------------

%INITIAL CONDITIONS

%-----------------------------------------

x(1)=0.8; % STATES OF PROCESS

yn(1)=0.12; % OUTPUT OF PROCESS

%-----------------------------------------

pp(1)=0.00009; % ERROR OF COVARIANCE

qp(1)=0.0008; % ERROR OF COVARIACE

%-----------------------------------------

anp(1)=0.11; %P.E. NO RECURRENTE

amrp(1)=0.33; % P.E. RECURRENT

er(1)=0.004; % NON RECURRENT E. E.

J(1)=0.005; % NON RECURRENT E. E.

erp(1)=0.006; % RECURRENT E. E.

J1(1)=0.003; % RECURRENT

4.2. Non-Recursive Validation

The graph presents the comparative digital algo-
rithm solutions found in Secs. 2 and 3. Non-
recursive (NR) and recursive (R) solutions are

shown in blue. For the following initial conditions,
the validation using graphs showed the simulation
comparing the non-recursive solution (blue) with
the recursive (red) one.

Figure 1 shows the stochastic output response
(NR) related to Eq. (2) and (R) Eq. (3). The figure
is simulated for clearance of 100 samples. There is
an overshoot of 0.15 (after 10 events) of amplitude
and then managed to tune to an amplitude of 0.01
on a continuous form. The non-recursive (NR) and
recursive (R) are confusing in the ten samples.

Figure 2 presents a histogram determining some
essential characteristics in the data of non-recursive
(NR) and recursive (R) output variables, where,

Fig. 1 Stochastic output variable ỹk (blue) and recursive
identification ŷk (red).

Fig. 2 Histogram of the stochastic output variable ỹk

(Blue) and recursive stochastic output variable ŷk (red).

2050066-5

F
ra

ct
al

s 
2
0
2
0
.2

8
. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

8
7
.1

5
7
.1

0
4
.9

4
 o

n
 1

1
/0

4
/2

0
. 
R

e-
u
se

 a
n
d
 d

is
tr

ib
u
ti

o
n
 i

s 
st

ri
ct

ly
 n

o
t 

p
er

m
it

te
d
, 
ex

ce
p
t 

fo
r 

O
p
en

 A
cc

es
s 

ar
ti

cl
es

.



R. C. Aguilera, J. J. M. Juarez & S. L. G. Coronel

both systems focused on having the data in the out-
put black-box variable (red) in the center, reach
a higher frequency, and compare with the non-
recursive (blue).

Figure 3 shows the case of the graphic of the
functional error, the two responses achieve confused
state, totally around 0.0001 of stabilization, thus
this precision is obtained.

In Fig. 4, the graph of recursive stochastic
parameter estimated shows the fit the non-recursive
stochastic parameter estimate absolutely without
appreciable error. It is also adjustable in the region
of stability in the range 0 < ˆ̃a < 1. Figure 4

Fig. 3 Functional error in recursive form J̃k (blue) and non-
recursive Ĵk (red).
Note: Both are confused in one.

Fig. 4 Stochastic parameter process 0.5, estimated recur-
sive parameter ã (blue) and estimated recursive probabilistic
parameter âk (red), obtaining confused by only one (red).

Fig. 5 Identification and the Domotic IOT reference signal.

presented a process with an estimated value of 0.5.
With this value, a steady balance is achieved with-
out wavering.

Simulation in Fig. 5 shows that the data output
of both stochastic variables reaches approximately
the same amplitude in decibels and cuts in a 0.02 dB
amplitude. Besides, it has a slight bias.

We consider a stochastic synthetic NLTV signal
created from the interval function given in Eq. (16),
which has variations in frequency, amplitude, with
{ξ k} ⊆ N(µ, σ ∧ 2 < ∞), an average value.

The cumulative systematic error e k, represented
by the second probability moment through the func-
tional J k(e k) = E{e k ∧ 2} is useful to mea-
sure the convergence level. This error is determined
point-to-point, at instant k, through the difference
between reference and the respective identification
in each case. The domotic IoT model considered in
(31) shows brain activity.

yk = 0.02 k 0.50 sin(0.014πk) + 0.8 ξk,

0 < k ≤ 250. (32)

The graph in Fig. 6 shows different values of the
non-recursive and recursive parameters estimated
for 0 < ˆ̃a < 1.

In Fig. 6, observe that most of the values are mov-
ing between the range 0 to −0.3 except by the 0.3
spike observed, which represents a steady behavior.

The absolute mean error is shown in Fig. 7
(MAE, Mean Absolute Error). In these tests val-
ues 4.8 mm, 8.9 mm and 2.2 mm were for the x, y
and z axes, respectively. Among the causes of the
systematic errors observed are those related to the
transformation of coordinates and the derivatives of
operations (median, dilation and Hough transform)
performed to determine the pairs of parallel lines.
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Fig. 6 Domotic IoT process parameter estimation.

Fig. 7 Domotic IoT system functional error.

By using the Canny filter and the Hough trans-
form, it was observed that these methods could be
more efficient when using images in which larger
objects exist. However, the limitations of the space
did not allow the use of larger objects.

As shown in Fig. 8, the ESS designs are delivered
by the Bot designer software after the coordinate is
taken to the bot by the user.

The bot, which is the software human interface
of the expert system, can design a layout for office
areas. In Fig. 8, we see an example with a lobby
area (the area with a receptionist), the cubicle areas
(the areas with small desks for employees), and the
meeting room (the space for meetings), all of them
for the first floor in this case. Note that the vor-
tices of the construction are C1–C8, which are two-
dimensional coordinates (X, Y ) given by the user
of the bot. S1–S4 are three-dimensional coordinates
(X, Y, Z), which represent the location of the sen-
sors (temperature, lighting, presence, camera, etc.)
for this smart office. The actual readings of the sen-
sors are sent to the internet and the sensors can be

Fig. 8 Expert system service (ESS) design.

controlled by a remote device. By creating, in this
way, an IoT layout with a domotic office, the IoT
system is not the core of this paper, but the bot
designer is the core.

5. DISCUSSION

Parameter estimation with probabilistic space for
an IoT-domotic drawing designer expert system is
the core objective of this paper, which can be a
designer for any number of drawings and schemat-
ics. The specific focus of this paper is domotic sen-
sor installation drawings in smart building offices,
but no less appealing than the combination between
some innovative concepts such as in the neural net-
work topic (The extreme learning machine). The
purpose of combining these concepts is to be at
the cuting edge of the state-of-the-art IoT domotic
development. However, sometimes, the innovation
cannot be a synonym of efficiency, this triad combi-
nation — designer bot, expert system, and extreme
learning machine — will need to be optimized for
scalability in a mass usage environment. Facilitat-
ing the optimization is the reason for the utility of a
parameter estimation study for this kind of process.
Also, note the potential of the designer expert sys-
tem as the core for a drawing designing revolution.

Initial conditions were obtained stochastically,
this means that the code starts running stochas-
tically until observing the best results. Parameters
and initial conditions in this paper are found under
best fractal behavior result.
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6. CONCLUSIONS

Our design achieves the no-recursive and recursive
stochastic algorithm of parameter estimates using
the moment second of Gaussian probability.

Stability on the IoT parameter estimation is
obtained in the range of −0.3 to 0, as shown in
Fig. 6, however, the most important thing about
Fig. 6 is that stability is possible for IoT models
shown as a fractal behavior, as discussed in this
paper. In Fig. 6, a spike almost reaches a value of
0.3, which the represents chaos unwanted.

Figure 7 shows the findings of the simulation pre-
cisions in the level of thousandths for functional
error. Thus, by trial and error, the stability of
non-recursive and recursive stochastic parameters
is estimated.

Parameter estimation probabilistic study can be
applied to unknown internal evolution IoT-Domotic
systems since function error can tend to a limit as
a minimum, as shown in Fig. 7.
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